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Motivation: Quantum Pre-Image Attack

Problem. Given a function f : {0, 1}n → {0, 1}n and a target output y, find an input x ∈ {0, 1}n

such that y = f(x).

00000000
...

00100101

...

11111111

...
00010100

...
00100111

...
11001101

...

f

...

Find x ∈ {0, 1}8 s.t. f(x) = 11001101

x′

f(x′)

• Classical Unstructured Search: need
Ω(2n) black-box queries to the function f

• Quantum Computing: Grover’s algorithm [Gro96]
◦ only requires O(2n/2) black-box queries to the
function f

◦ this is tight: any quantum algorithm using f as a
black box must make Ω(2n/2) queries [BBBV97]

• What is the full cost of a quantum pre-image
attack?
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Motivation: Quantum Pre-Image Attack
The full cost of a quantum pre-image attack is defined as the space-time cost (ST-cost), i.e.,

(space(C)) × (time(C)),
where C: a quantum circuit that computes the quantum pre-image attack.

Cf Cf Cf

repeat ≈ π
4 · 2n/2 times

· · · · · · · · ·

|0〉 H

Uf

Us
Uf

Us
Uf

Us

|0〉 H
· · ·

|0〉 H
|−〉

width w

depth d

width w

depth O(d · 2n/2)
If we instantiate f with a quantum circuit Cf of width w and depth d using Grover’s algorithm,

(total ST-cost of the attack) = O(wd · 2n/2).

Questions.
• How do we characterize the space-time cost of a quantum pre-image attack?
• Can we build f with high space-time cost to resist quantum pre-image attacks?
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If we instantiate f with a quantum circuit Cf of width w and depth d using Grover’s algorithm,

(total ST-cost of the attack) = O(wd · 2n/2).

Questions.
• How do we characterize the space-time cost of a quantum pre-image attack?

◦ will visit later with a relevant game
• Can we build f with high space-time cost to resist quantum pre-image attacks?

◦ Memory-Hard Functions!
◦ Application: password hashing
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Data-Independent Memory-Hard Function (iMHF)

Definition. An iMHF fG,H is defined by
• H : {0, 1}2k → {0, 1}k (Random Oracle)
• A DAG G (encodes data-dependencies), with maximum indegree δ = O(1)

111

222

333

44

L1 = H(pwd, salt) L3 = H(L2, L1)

Input: pwd, salt

Output: fG,H(pwd, salt) = L4

• Classically, evaluating an iMHF: the black pebbling game
◦ Rule 1: should start with no pebbles on the graph and end with target nodes
◦ Rule 2: all the parents need to be previously pebbled to place a new pebble
◦ Rule 3 (sequential only): can place only one pebble at each round
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Space-Time Complexity
In the Black Pebbling Game

1

2

3

4

L1

L2

L3 = H(L1, L2)

A pebbling P = (P1 = {1}, P2 = {1, 2}, P3 = {2, 3}, P4 = {4})

Space-Time (ST) Complexity
• ST(P ) = (time) × (max space), and

ST(G) = min
P

ST(P )

• For above example, we have

ST(P ) = 4 × 2 = 8

Back to our first question:
Can we use black pebbling to analyze the
space-time cost of a quantum circuit?

No!

Why?
• Quantum circuits must be reversible
• P3 = {2, 3} → P4 = {4}: not a reversible transition
• Quantum Uncomputation in the QROM:

|x, y〉 H7−→ |x, y ⊕ H(x)〉

∴ |(L1, L2), L3〉 H7−→ |(L1, L2), L3 ⊕ H(L1, L2)〉

= |(L1, L2), 0k〉

∴ to remove a pebble from node 3 using uncomputation,
we need have needed pebbles on nodes 1 and 2
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The Sequential Reversible Pebbling Game
• Prior work [Ben89, LV96, Krá01, MSR+19] introduced sequential reversible computation
/reversible pebbling game

◦ Added more constraints to capture reversible transitions by quantum uncomputation
◦ Analyzed space-time tradeoffs in quantum computing

• “Sequential” Reversible Pebbling Game: Still not suitable for analyzing the space-time cost of
a quantum circuit
∵ the circuit can evaluate H in parallel

O(N) stepsO(log N) steps
SequentialParallel
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Key Research Question
Back to Our First Question

How to characterize the space-time cost of a quantum circuit

CfG,H
for a data-independent

Memory-Hard Function fG,H?

Partial Answer: The Parallel Reversible Pebbling Game
& Study some attacks against iMHFs in this pebbling model
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Definition: Parallel Reversible Pebbling Game
A parallel reversible pebbling P = (P0, . . . , Pt) is a sequence of pebbling configurations with the
conditions (same as classical):
1. start with no pebbles (i.e., P0 = ∅) and end with target nodes T (i.e., T ⊆ Pt) (⋆),
2. a new pebble can be added only if its parents were previously pebbled, and
the following additional conditions:

Condition 3. (Quantum No-Deletion)
a pebble can be deleted only if all of its parents were previously pebbled

Condition 4. (Quantum Reversibility)
we must keep the pebble if a pebble was required to generate new pebbles (or delete pebbles)

(⋆) we can make this condition strict, i.e., Pt = T . See the paper for detail.
7/15



Example: A Parallel Pebbling
Classical vs. Reversible

1 2 3 4 5

Classical
Round 1
Round 2
Round 3
Round 4
Round 5

Reversible
Round 1
Round 2
Round 3
Round 4
Round 5

: illegal in a reversible pebbling by Condition 3 (Quantum No-Deletion)
– cannot remove pebble since not all parents were pebbled

: illegal in a reversible pebbling by Condition 4 (Quantum Reversibility)
– must keep pebbles since they were required to place a new pebble 8/15
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Reversible Pebbling Attack 1
Attack on a Line Graph

• PBKDF2 [Kal00] and BCRYPT [PM99]: widely deployed hash functions
◦ can be characterized as a line graph

◦ Are they resistant to quantum pre-image attacks?

Parallel Classical PebblingNaïve Reversible PebblingParallel Reversible Pebbling [Our Work]
(ST-Cost) = N(ST-Cost) = N 2

‖: parallel, →← : reversible
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(ST-Cost) = N(ST-Cost) = N 2

Our Result. For a line graph LN with N nodes, we have ST‖, →← (LN ) = O
(

N
1+ 2√

log N

)
.

• We modified Li and Vitányi’s (sequential) strategy [LV96]
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Reversible Pebbling Attack 2
Attack on Any (e, d)-Reducible DAGs

Definition. A DAG G = (V, E) is (e, d)-reducible if there exists a depth-reducing set S ⊆ V of size
|S| ≤ e such that the longest path in G − S has length ≤ d.

Example. (2, 2)-reducible graph

1 2 33 44 5 6

Our Result. If G is (e, d)-reducible, then ST‖, →← (G) = O(Ne + Nd2d).

• It becomes useful when e � N and d � log N (which implies ST‖, →← (G) � O(N2))
• Argon2i-A/B: winner of the password hashing competition/standardized
• Using this result, we have ST‖, →← (Argon2i-A) = O(N2 log log N/

√
log N) and

ST‖, →← (Argon2i-B) = O(N2/ 3
√

log N)
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Reversible Pebbling Attack 3
Using an Induced Line Graph

G · · · · · ·

Bi−1 Bi Bi+1

LdN/be · · · v′i−1 v′i v′i+1v′i+1v′i+1 · · ·v′i+1

• Given a graph G, split into blocks of size b and create a line graph LdN/be of size dN/be

• Transform the reversible pebbling of LdN/be to the original graph G
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Example
Attack Using an Induced Line Graph
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Our Result.
ST‖, →← (G) = O

(
SN + b2 · ST‖, →← (LdN/be)

)
, where S = (# skip nodes) and b > 0: block size
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iMHF Example: DRSample
Attack Using an Induced Line Graph

• DRSample [ABH17]: a practical iMHF candidate with stronger classicalmemory-hardness
• For DRSample, we showed that (whp) the number of skip nodes is at most

(# skip nodes) = O
(

N log log N

log N

)
,

when we set the block size b = O(N/ log2 N).

⇒ ST‖, →← (DRSample) = O
(

N2 log log N

log N

)
.

• Note. DRSample admits a more efficient reversible pebbling attack than Argon2i-A/B

cf.) ST‖, →← (Argon2i-A) = O
(

N2 log log N√
log N

)
and ST‖, →← (Argon2i-B) = O

(
N2

3
√

log N

)
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Other Results
Parallel Amortized Space-Time Cost

The attacks so far:
• We considered running a single instance of Grover’s search

• What if the attacker runs multiple instances of Grover’s algorithm in parallel?
⇒ can “amortize” space usage over multiple inputs

∴ Amortized Space-Time Complexity (aST) for parallel reversible pebblings also matters!
(:= the sum of the number of pebbles used in each round)

Our Result:We extend the (non-reversible) Alwen and Blocki’s attack [AB16]

Theorem. If G is (e, d)-reducible with N nodes with indegree δ, then

aST‖, →← (G) ≤ min
g≥d

{
2N

(
2Nd

g
+ e + (δ + 1)g

)
+ N + 2Nd

g

}
.

• Corollary: aST‖, →← (Argon2-A) = O(N1.75 log N) and aST‖, →← (Argon2-B) = O(N1.8).
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Conclusion

• We introduced the parallel reversible pebbling game, and
• We use this game to analyze the reversible space-time complexity of a line graph and
data-independent Memory-Hard Functions such as Argon2i-A/B and DRSample

• We also give a reversible pebbling attack with low reversible cumulative pebbling cost by extending
[AB16] attack

Open Questions
• Asymptotically stronger reversible pebbling attacks for iMHFs?

◦ Can we extend the recursive pebbling attack [ABP17] to the reversible setting?
• Is there a DAG with constant indegree having (parallel) reversible ST-cost Ω(N2)?

◦ Candidate: DRS+BRG [BHK+19], none of our attacks performed well against DRS+BRG
• Can we come up with a reversible pebbling reduction in the parallel quantum random oracle model?

◦ We only showed that efficient reversible pebbling attacks yield efficient quantum pre-image
attacks, but not the reverse direction

Questions?
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