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Motivation / Contribution
• Schnorr Signatures: 4𝑘-bits long (short) 

with 𝑘-bit security
✓ One hash value (2𝑘-bits) + One group 

element (2𝑘-bits)

✓ BLS Signatures are shorter (2𝑘-bits), but 

less efficient

• Folklore: 3𝑘-bit signatures with shorter 

hash function (𝑘-bits)
✓ No security proof

• Our Result: Folklore is right!
✓ Concrete security proof in Generic Group 

Model + Random Oracle Model shows

✓ 3𝑘-bit signatures with 𝑘-bits of security
Our Results

• We have the following (informal) form of theorem which guarantees a 3𝑘-bit signature with

𝑘-bits of security:

Generic Group Model
• For a cyclic group 𝐺 = ⟨𝑔⟩ of order 𝑞, 

elements of 𝐺 are encoded by bit strings 

of length ℓ in a cryptographic scheme. Let 

𝔾 be a set of bit strings of length ℓ, then

𝜏: 𝐺 → 𝔾
gives the natural representation of 𝐺 in 𝔾.

• The key idea is that an adversary attacks 

a primitive is only given access to a 

randomly chosen encoding of a group 

instead of efficient encodings.

• On input 𝑎, 𝑏 ∈ 𝔾 × 𝔾 and 𝑘 ∈ ℤ𝑞, the 

Mult ⋅,⋅ , Inv(⋅) and Pow(⋅,⋅) oracles return 

Mult 𝑎, 𝑏 = 𝜏 𝜏−1 𝑎 ⋅ 𝜏−1 𝑏

Inv 𝑎 = 𝜏 (𝜏−1 𝑎 )−1

Pow 𝑎, 𝑘 = 𝜏 𝜏−1 𝑎
𝑘

if 𝑎, 𝑏 ∈ 𝜏(𝐺).

Open Questions
• Could one achieve the same concrete 

security bound for ECDSA/DSA in the 

generic group and random oracle model?

• Are we able to identify any concrete 

statements that have been proved about 

BLS signatures in the generic group and 

random oracle model?
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Security Reduction
• Security reduction starts with the attacker 𝒜𝑠𝑖𝑔 that attacks the modified Schnorr signature 

and builds the discrete-log attacker 𝒜𝑑𝑙𝑜𝑔.

Figure 2. A Security Reduction

Theorem. Let 𝒜 be an adversary attacking Schnorr signature scheme running in time at most 𝑡. 
Then the probability that the adversary successfully forge a signature is bounded by

Adv 𝒜 ≤ 𝑂
𝑡

𝑞
+
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𝑞

under the Generic Group Model of order 𝑞 and Random Oracle Model.

• Set 𝑞 = 22𝑘 and select a hash function H with 𝑘 output bits. The resulting signatures have 

𝑘-bits of security and length 𝑘 + log2 𝑞 = 𝑘 + 2𝑘 = 3𝑘.

𝒜𝑑𝑙𝑜𝑔 𝒜𝑠𝑖𝑔

Input:  ℎ = 𝜏(𝑔𝑥).

Programmed Value

𝑥1, 𝑟1
(𝑥2, 𝑟2)

⋮

𝔤 = 𝜏(𝑔), ℎ, 𝑞

GM oracle queries

H(𝐼||𝑚) query

Sign(⋅,⋅) query

𝜎 = 𝑠, 𝑒 ,𝑚

H(⋅), Sign(⋅,⋅), Mult(⋅,⋅),
Inv ⋅ , Pow(⋅,⋅)

𝐼𝜎 = 𝜏 𝑔𝑠 ⋅ 𝑔−𝑥𝑒 , 𝑒𝜎 = H(𝐼𝜎||𝑚)

The Schnorr Signature Scheme[1]

Figure 1. The Schnorr Signature Scheme

Kg:

𝑠𝑘՚
$
ℤ𝑞 ; 𝑝𝑘 ՚ 𝜏(𝑔𝑠𝑘)

Return (𝑝𝑘, 𝑠𝑘)

Sign(𝑠𝑘,𝑚):

𝑟՚
$
ℤ𝑞 ; 𝐼 ՚ 𝜏 𝑔𝑟

𝑒 ՚ H(𝐼| 𝑚 (first 𝑘-bits)

𝑠 ՚ 𝑟 + 𝑠𝑘 ⋅ 𝑒 mod 𝑞
Return 𝜎 = (𝑠, 𝑒)

Vfy(𝑝𝑘,𝑚, 𝜎):

𝐼 ՚Mult(Pow 𝜏 𝑔 , 𝑠 , Pow Inv 𝑝𝑘 , 𝑒 )
If  H(𝐼| 𝑚 = 𝑒
Then return 1

Else return 0.

Sign(𝑚) without having 𝑥
Pick 𝑠, 𝑒 randomly

Compute 𝜏(𝑔𝑠), 𝜏(𝜏−1(ℎ)𝑒) = 𝜏(𝑔𝑥𝑒)
Compute 𝐼 = 𝜏(𝑔𝑠 ⋅ 𝑔−𝑥𝑒)
If H(𝐼||𝑚) previously queried, then

Return ⊥
Define 𝑒 ≔ H(𝐼||𝑚)
Return 𝜎 = (𝑠, 𝑒)

Mult 𝜏 𝑔 , 𝜏 𝑔 = 𝜏(𝑔2) ⟹ “Known”

Mult 𝜏 𝑔2 , ℎ = 𝜏(𝑔2+𝑥) ⟹ “Partially Known”

Neither in both sets ⟹ “Unknown”

Case 1: Query H(𝐼||𝑚) not made before

Case 2: 𝐼𝜎 in “Unknown”

Case 3: 𝐼𝜎 in “Partially Known”

• Our Analysis: H is a random oracle that outputs 𝑘 bits (can truncate output if needed)

• Typical: Hashes are 2𝑘 bits long (4𝑘-bit signatures)

= 𝜏 𝑔𝑠 ⋅ 𝑔−𝑠𝑘⋅𝑒

𝑘-bits of Security
• We say that a scheme yields “𝑘-bits of 

security” if any attacker running in time at 

most 𝑡 should forge a signature with 

probability at most 𝑡/2𝑘 and this should 

hold for all 𝑡 ≤ 2𝑘.


