CERIAS

The Center for Education and Research in Information Assurance and Security

On the Security of Short Schnorr Signatures

Jeremiah M Blocki Seunghoon Lee Department of Computer Science, Purdue University

Motivation / Contribution

- Schnorr Signatures: 4k-bits long (short) with k-bit security
 - ✓ One hash value (2k-bits) + One group element (2k-bits)
 - ✓ BLS Signatures are shorter (2k-bits), but less efficient
- Folklore: 3*k*-bit signatures with shorter hash function (*k*-bits)
 - ✓ No security proof
- Our Result: Folklore is right!

The Schnorr Signature Scheme^[1]

Kg:
 $sk \leftarrow \mathbb{Z}_q ; pk \leftarrow \tau(g^{sk})$ Sign(sk, m):
 $r \leftarrow \mathbb{Z}_q ; I \leftarrow \tau(g^r)$
 $e \leftarrow H(I||m) (first k-bits)$
 $s \leftarrow r + sk \cdot e \mod q$
Return $\sigma = (s, e)$ Vfy (pk, m, σ) :
 $I \leftarrow Mult(Pow(\tau(g), s), Pow(Inv(pk), e))$
If H(I||m) = e
 $= \tau(g^s \cdot g^{-sk \cdot e})$
Then return 1
Else return 0.

Figure 1. The Schnorr Signature Scheme

- Our Analysis: H is a random oracle that outputs k bits (can truncate output if needed)
- Concrete security proof in Generic Group
 Model + Random Oracle Model shows
- ✓ 3k-bit signatures with k-bits of security

k-bits of Security

• We say that a scheme yields "k-bits of security" if any attacker running in time at most t should forge a signature with probability at most $t/2^k$ and this should hold for all $t \le 2^k$.

Generic Group Model

 For a cyclic group G = ⟨g⟩ of order q, elements of G are encoded by bit strings of length ℓ in a cryptographic scheme. Let G be a set of bit strings of length ℓ, then τ: G → G

gives the natural representation of G in \mathbb{G} .

The key idea is that an adversary attacks a primitive is only given access to a randomly chosen encoding of a group instead of efficient encodings.
On input (a, b) ∈ G × G and k ∈ Z_q, the Mult(·,·), Inv(·) and Pow(·,·) oracles return Mult(a, b) = τ(τ⁻¹(a) · τ⁻¹(b)) Inv(a) = τ((τ⁻¹(a))⁻¹) Pow(a, k) = τ((τ⁻¹(a))^k) if a, b ∈ τ(G).

• Typical: Hashes are 2k bits long (4k-bit signatures)

Our Results

• We have the following (informal) form of theorem which guarantees a 3k-bit signature with k-bits of security:

Theorem. Let \mathcal{A} be an adversary attacking Schnorr signature scheme running in time at most t. Then the probability that the adversary successfully forge a signature is bounded by

$$\operatorname{Adv}(\mathcal{A}) \le O\left(\sqrt{\frac{t}{q}} + \frac{t}{2^k} + \frac{t^2}{q}\right)$$

under the Generic Group Model of order q and Random Oracle Model.

• Set $q = 2^{2k}$ and select a hash function H with k output bits. The resulting signatures have k-bits of security and length $k + \log_2 q = k + 2k = 3k$.

Security Reduction

• Security reduction starts with the attacker A_{sig} that attacks the modified Schnorr signature and builds the discrete-log attacker A_{dlog} .

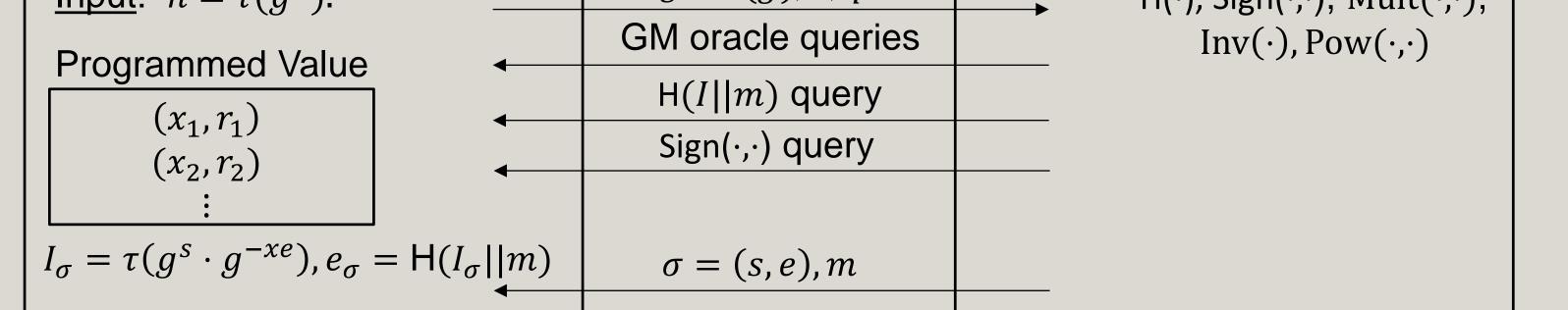
$$\mathcal{A}_{dlog}$$

$$g = \tau(g), h, q$$

$$H(\cdot) \text{ Sign}(\cdot \cdot) \text{ Mult}(\cdot \cdot)$$

Open Questions

- Could one achieve the same concrete security bound for ECDSA/DSA in the generic group and random oracle model?
- Are we able to identify any concrete statements that have been proved about BLS signatures in the generic group and random oracle model?



Sign(m) without having x	
Pick s, e randomly	
Compute $\tau(g^s)$, $\tau(\tau^{-1}(h)^e) = \tau(g^{xe})$	
Compute $I = \tau(g^s \cdot g^{-xe})$	
If $H(I m)$ previously queried, then	
Return ⊥	
Define $e \coloneqq H(I m)$	
Return $\sigma = (s, e)$	

 $Mult(\tau(g), \tau(g)) = \tau(g^2) \implies \text{``Known''}$ $Mult(\tau(g^2), h) = \tau(g^{2+x}) \implies \text{``Partially Known''}$ $Neither in both sets \implies \text{``Unknown''}$

Case 1: Query H(I||m) not made before Case 2: I_{σ} in "Unknown" Case 3: I_{σ} in "Partially Known"

Figure 2. A Security Reduction

References

- 1. Schnorr (1989). Efficient Identification and Signatures for Smart Cards. CRYPTO '89.
- 2. Neven, G., Smart, N. & Warinschi, B. (2009). Hash function requirements for Schnorr signatures. Journal of Mathematical Cryptology, 3(1), pp. 69-87.
- 3. Seurin Y. (2012). On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model. EUROCRYPT 2012.
- 4. Boneh, D., Lynn, B., & Shacham, H. (2004). Short Signatures from the Weil Pairing. Journal of Cryptology. 17 (4): 297-319.

