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Graph Pebbling (Sequential/Parallel)
Consider a directed acyclic graph (DAG) G = (V, E).

1

2

3

4

5

Goal: place pebbles on all sink nodes.

Pebbling Rules: P = {P1, · · · , Pt} ⊂ V where Pi ⊆ V denotes the number of pebbles in round i,
• P0 = ∅, (initially, the graph is unpebbled)
• ∀i ∈ [t], v ∈ Pi \ Pi−1 ⇒ parents(v) ⊆ Pi−1, and

(a new pebble can be added only if its parents were all pebbled in the previous round)
• ∀i ∈ [t], |Pi \ Pi−1| ≤ 1. (only in the sequential pebbling game)
• We will focus on the parallel pebbling game throughout this talk.

Example

1 2 3 41 2 3 4 51 2 3 4 5 P1 = {1} (data value L1 stored in memory)P2 = {1, 2} (data values L1 and L2 stored in memory)P3 = {3} (data value L3 stored in memory)P4 = {3, 4} (data values L3 and L4 stored in memory)P5 = {5} (data value L5 stored in memory)
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Pebbling Complexity: The Cumulative Pebbling Cost cc(G)
Let P∥

G be the set of all valid parallel pebblings of G.

Definition

• The cumulative cost of a pebbling P = (P1, · · · , Pt) ∈ P∥
G is

cc(P ) := |P1| + · · · + |Pt|.

• The cumulative pebbling cost of a graph G is defined by

cc(G) = min
P ∈P∥

G

cc(P )

where the minimum is taken over all legal black pebblings of G.

Example

1 2 3 41 2 3 4 51 2 3 4 5 cc(G) ≤ |P1| + · · · + |P5| = 1 + 2 + 1 + 2 + 1 = 7.cc(G) ≤ |P1| + · · · + |P5| = 1 + 2 + 1 + 2 + 1 = 7.cc(G) ≤ |P1| + · · · + |P5| = 1 + 2 + 1 + 2 + 1 = 7.cc(G) ≤ |P1| + · · · + |P5| = 1 + 2 + 1 + 2 + 1 = 7.cc(G) ≤ |P1| + · · · + |P5| = 1 + 2 + 1 + 2 + 1 = 7.
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Applications of cc(G)

• Password hashing - Memory Hard Function (MHF) f

• A brute-force attacker wants to compute fG on many inputs (m)
◦ Involves pebbling a DAG G m times
◦ Want total cost as large as possible

• Consider the Space×Time (ST)-Complexity ST(G) := min
P ∈P∥

G

(tP × maxi≤tP |Pi|) .

Theorem [AS15] (informal)
For a secure side channel resistant memory hard function for password hashing, it suffices to find a DAG G
with constant indegree and maximum cc(G).

• Cryptanalysis of MHF ⇔ Find cc(G).
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The Main Result

• Blocki and Zhou [BZ18] recently showed that computing cc(G) is NP-Hard. However, this does not
rule out the existence of a (1 + ε)-approximation algorithm for any constant ε > 0.

• Our main result is the hardness of any constant factor approximation to the cost of graph pebbling
even for DAGs with constant indegree.

Theorem
Given a DAG G with constant indegree, it is Unique Games hard to approximate cc(G) within any
constant factor.

Strategy?
• Svensson’s result of Unique Games hardness to distinguish two cases for a DAG G

• Reduction to G̃ with gap between the upper and lower bound of cc(G̃)

Jeremiah Blocki, Seunghoon Lee, Samson Zhou Approximating Cumulative Pebbling Cost is Unique Games Hard 8/37
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Unique Games Conjecture

Definition (Unique Games)

An instance of Unique Games U = (G = (V, W, E), [R], {πv,w}v,w) consists of a regular bipartite graph
G(V, W, E) and a set [R] of labels. Each edge (v, w) ∈ E has a constraint given by a permutation
πv,w : [R] → [R]. The goal is to output a labeling ρ : (V ∪ W ) → [R] that maximizes the number of
satisfied edges, where an edge is satisfied if ρ(v) = πv,w(ρ(w)).

Example

v1

v2

w1

w2

w3

V

W

Consider the following permutation assignment:

πv1,w1 : {1, 2, 3, 4, 5} → {2, 5, 1, 3, 4}, (e.g. πv1,w1 (1) = 2)
πv1,w3 : {1, 2, 3, 4, 5} → {3, 2, 5, 4, 1},

πv2,w2 : {1, 2, 3, 4, 5} → {4, 3, 2, 5, 1},

πv2,w3 : {1, 2, 3, 4, 5} → {3, 1, 4, 5, 2}.

ρ(v1) ρ(v2) ρ(w1) ρ(w2) ρ(w3) (#satisfied edges)

1 2 3 4 5 3
2 3 5 1 4 0
3 4 2 5 1 1
...

...
...

...
...

...
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G(V, W, E) and a set [R] of labels. Each edge (v, w) ∈ E has a constraint given by a permutation
πv,w : [R] → [R]. The goal is to output a labeling ρ : (V ∪ W ) → [R] that maximizes the number of
satisfied edges, where an edge is satisfied if ρ(v) = πv,w(ρ(w)).

The following conjecture from [Kho02] has been extensively used to prove several strong hardness of
approximation algorithm.

Conjecture (Unique Games Conjecture) [Kho02]

For any constants α, β > 0, there exists a sufficiently large integer R (as a function of α, β) such that for
Unique Games instance with label set [R], no polynomial time algorithm can distinguish whether:

1. (completeness) the maximum fraction of satisfied edges of any labeling is at least 1 − α, or

2. (soundness) the maximum fraction of satisfied edges of any labeling is less than β.

• Approximation algorithm for cc(G)?
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Technical Ingredients 0: Depth Robustness (↔ Depth Reducibility)
First, we define depth(G) to be the length of the longest directed path in a DAG G.

Definition
• A DAG G = (V, E) is (e, d)-depth robust if

∀S ⊆ V s.t. |S| ≤ e ⇒ depth(G − S) ≥ d.

• We say that G is (e, d)-reducible if G is not (e, d)-depth robust. That is,

∃S ⊆ V s.t. |S| ≤ e and depth(G − S) < d.

Example

The following graph is (e = 2, d = 2)-reducible:

1 2 3 4 5 63 4
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First, we define depth(G) to be the length of the longest directed path in a DAG G.

Definition
• A DAG G = (V, E) is (e, d)-depth robust if

∀S ⊆ V s.t. |S| ≤ e ⇒ depth(G − S) ≥ d.

• We say that G is (e, d)-reducible if G is not (e, d)-depth robust. That is,

∃S ⊆ V s.t. |S| ≤ e and depth(G − S) < d.

A few facts about depth robustness:
• [AB16] For any (e, d)-reducible DAG G with N nodes,

cc(G) ≤ min
g≥d

(
eN + gN × indeg(G) + N2d

g

)
.

• [ABP17] For any (e, d)-depth robust DAG G,

cc(G) ≥ ed.
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Technical Ingredients 1: Svensson’s Result of Unique Game Hardness
Svensson [Sve12] proved the Unique Games hardness of a DAG G:

Theorem [Sve12]
For any constant k, ε > 0, it is Unique Games hard to distinguish between whether

1. G is (e1, d1)-reducible with e1 = N/k and d1 = k, and

2. G is (e2, d2)-depth robust with e2 = N(1 − 1/k) and d2 = Ω(N1−ε).

• To prove this, reduction from an instance of Unique Games U = (G = (V, W, E), [R], {πv,w}v,w) to
a DAG GU on N nodes.

◦ G is (e1, d1)-reducible if U is satisfiable, and
◦ G is (e2, d2)-depth robust if U is unsatisfiable.

• As mentioned before, we have nice upper and lower bounds for cc(G) from [ABP17] and [AB16]:

Theorem
• [ABP17] For any (e, d)-depth robust DAG G, we have cc(G) ≥ ed.
• [AB16] For any (e, d)-reducible DAG G with N nodes, we have

cc(G) ≤ ming≥d

(
eN + gN × indeg(G) + N2d

g

)
.

• Why can’t we directly use this result to obtain our result (UG hardness of approximability of cc(G)?)
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Technical Ingredients 1: Svensson’s Result of Unique Game Hardness

Theorem [Sve12]
For any integer k ≥ 2 and constant ε > 0, it is Unique Games hard to distinguish between whether

1. G is (e1, d1)-reducible with e1 = N/k and d1 = k, and

2. G is (e2, d2)-depth robust with e2 = N(1 − 1/k) and d2 = Ω(N1−ε).

Challenges of Applying Svensson’s Construction

The result of Alwen et al. [ABP17] and [AB16] tells us that
• cc(GU ) ≥ e2d2, and

• cc(GU ) ≤ min
g≥d1

(
e1N + gN × indeg(GU ) + N2d1

g

)
⇒ no gap between the upper/lower bounds since indeg(GU ) = O(N) implies

gN × indeg(GU ) = gN2 ≫ e2d2.

⇒ need to reduce the indegree (how? using γ-extreme depth-robust graphs.)
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Svensson’s Construction

Layered Bipartite Graph
ĜU

Unique Games Instance
U = (G, [R], {πv,w}v,w) Required DAG GU

will discuss this part

reduction transformation

1. The graph ĜU contains two types of vertices:
◦ bit-vertices partitioned into bit-layers B = B0 ∪ · · · ∪ BL,
◦ test-vertices partitioned into test-layers T = T0 ∪ · · · ∪ TL−1, and
◦ all of the edges in the graph are between bit-vertices and test-vertices.

2. ĜU shows symmetry between the layers:
◦ Bℓ = {bℓ

1, · · · , bℓ
m} and Tℓ = {tℓ

1, · · · , tℓ
p} (# of bit- and test-vertices in each layer is the same)

◦ The edges between Bℓ and Tℓ (resp. Tℓ and Bℓ+1) encode the edge constraints in the UG instance U .
◦ The directed edge (bℓ

i , tℓ
j) exists ⇔ ∀ℓ′ ≥ ℓ the edge (bℓ

i , tℓ′
j ) exists.

◦ The directed edge (tℓ
j , bℓ+1

i ) exists ⇔ ∀ℓ′ > ℓ the edge (tℓ
j , bℓ′

i ) exists.

3. The number of layers L = N1−ε.
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1. The graph ĜU contains two types of vertices:
◦ bit-vertices partitioned into bit-layers B = B0 ∪ · · · ∪ BL,
◦ test-vertices partitioned into test-layers T = T0 ∪ · · · ∪ TL−1, and
◦ all of the edges in the graph are between bit-vertices and test-vertices.
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Svensson’s Construction

• Cx,S = {z ∈ [k]R : zj = xj ∀j ̸∈ S}, (the sub-cube whose coordinates not in S are fixed according to x)

• Cx,S,v,w = {z ∈ [k]R : zj = xπv,w(j) ∀πv,w(j) ̸∈ S}, (the image of the sub-cube Cx,S under πv,w )

• C⊕
x,S = {z ⊕ 1 : z ∈ Cx,S}, (where ⊕ denotes coordinate-wise addition modulo k)

• C⊕
x,S,v,w = {z ⊕ 1 : z ∈ Cx,S,v,w}.

Svensson’s Construction for the Graph ĜU

We fix k to be an integer and ε, δ > 0 to be arbitratily small constants. For some L to be fixed,
• There are L + 1 layers of bit-vertices. Each set of bit-vertices Bℓ with 0 ≤ ℓ ≤ L contains bℓ

w,x for
each w ∈ W and x ∈ [k]R.

• There are L layers of test-vertices. Each set of test-vertices Tℓ with 0 ≤ ℓ ≤ L − 1 contains
tℓ
x,S,v,w1,··· ,w2t

for each x ∈ [k]R, S = (s1, · · · , sεR) ∈ [R]εR, v ∈ V and every sequence of
(w1, · · · , w2t) (not necessarily distinct) neighbors of v.

• If ℓ ≤ ℓ′ and z ∈ Cx,S,v,wj , then add an edge from bℓ
wj ,z to tℓ′

x,S,v,w1,··· ,w2t
for each 1 ≤ j ≤ 2t.

• If ℓ > ℓ′ and z ∈ C⊕
x,S,v,wj

, then add an edge from tℓ′
x,S,v,w1,··· ,w2t

to bℓ
wj ,z for each 1 ≤ j ≤ 2t.

• If T = |T0 ∪ · · · ∪ TL−1|, then L is selected so that δ2L ≥ T 1−δ .
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Svensson’s Construction

B0

T0

...
...

Bℓ

Tℓ

...
...

BL−1

TL−1

BL

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

⇒ indeg(ĜU ) ≥ L (and can be as large as Ω(N) in general.) Need to reduce indegree!
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Technical Ingredients 2: γ-Extreme Depth Robust Graphs (Indegree Reduction)

• As discussed before, Svensson’s construction has too large indegree (O(N)) for the purposes of
bounding cc(G). How to reduce indegree?

Definition
A DAG Gγ,N on N nodes is said to be γ-extreme depth-robust if it is (e, d)-depth robust for any e, d > 0
such that e + d ≤ (1 − γ)N .

Svensson’s Graph ĜU

γ-Extreme DR Graph Gγ,L+1

SparsifyGγ,L+1 (ĜU )

• Indegree and outdegree
O(Nε log2 N) ≪ O(N)

• keep the edge (bℓ, tℓ′
) ⇔

ℓ = ℓ′ or (ℓ, ℓ′) ∈ E(Gγ,L+1)
• keep the edge (tℓ′

, bℓ) ⇔
(ℓ′, ℓ) ∈ E(Gγ,L+1)

transformation Sparsify

• Alwen et al. [ABP18] showed that for any constant γ > 0, there exists a family {Gγ,N }∞
N=1 of

γ-extreme depth-robust DAGs with maximum indegree and outdegree O(log N).
• Then SparsifyGγ,L+1

(ĜU ) will have degree at most
O(indeg(Gγ,L+1) × outdeg(Gγ,L+1) × N/(L + 1)) = O(Nε log2 N).
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Technical Ingredients 2: γ-Extreme Depth Robust Graphs (Indegree Reduction)

B0

T0

...
...

Bℓ

Tℓ

...
...

BL−1

TL−1

BL

· · · · · · · · ·

ĜU

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

+

0

...

ℓ

L–1

...

L

Gγ,L+1

⇒

B0

T0

...
...

Bℓ

Tℓ

...
...

BL−1

TL−1

BL

· · · · · · · · ·

SparsifyGγ,L+1
(ĜU )

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·
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Technical Ingredients 2: γ-Extreme Depth Robust Graphs (Indegree Reduction)

Theorem [Sve12]
For any integer k ≥ 2 and constant ε > 0, it is Unique Games hard to distinguish between whether

1. G is (e1, d1)-reducible with e1 = N/k and d1 = k, and

2. G is (e2, d2)-depth robust with e2 = N(1 − 1/k) and d2 = Ω(N1−ε).

• Indegree Reduction with SparsifyGγ,L+1
(ĜU )

• Analysis with Graph Coloring and Weighted Depth Robustness

Theorem (3.3)
For any integer k ≥ 2 and constant ε > 0, given a DAG G with N vertices and
indeg(G) = O(Nε log2 N), it is Unique Games hard to distinguish between the following cases:

• (Completeness): G is
((

1−ε
k

)
N, k

)
-reducible.

• (Soundness): G is ((1 − ε)N, N1−ε)-depth robust.
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Obtaining DAGs with Constant Indegree

• The second indegree reduction procedure IDR(G, γ) replaces each node v ∈ V with a path
Pv = v1, · · · , vδ+γ , where δ = indeg(G).

• For each edge (u, v) ∈ E, we add the edge (uδ+γ , vj) whenever (u, v) is the jth incoming edge of v.
• We observe that indeg(IDR(G, γ)) = 2.

v

u

· · ·

G

v1 v2 · · · vδ+γ

u1 · · · uδ+γ

· · · · · ·

IDR(G, γ)

Lemma ([ABP17])
• If G is (e, d)-reducible, then IDR(G, γ) is (e, (δ + γ)d)-reducible.
• If G is (e, d)-depth robust, then IDR(G, γ) is (e, γd)-depth robust.
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Putting 1 and 2 Together: UG Hardness for DAGs with Constant Indegree

Corollary (3.5)

For any integer k ≥ 2 and constant ε > 0, given a DAG G with N vertices and indeg(G) = 2, it is
Unique Games hard to decide whether G is (e1, d1)-reducible or (e2, d2)-depth robust for

• (Completeness): e1 = 1
k

N
1

1+2ε and d1 = kN
2ε

1+2ε .

• (Soundness): e2 = (1 − ε)N
1

1+2ε and d2 = 0.9N
1+ε

1+2ε .

Proof Sketch. Suppose G′ is a graph with M vertices. With setting γ = M2ε − δ,

G′ with M vertices −→ G = IDR(G′, γ) with (δ + γ)M = M1+2ε = N vertices

or equivalently, M = N
1

1+2ε . By the previous Lemma,

• G = IDR(G′, γ) is (e1, d1)-reducible for e1 = M
k

= N1/(1+2ε)

k
and d1 = kM2ε = kN

2ε
1+2ε .

• G = IDR(G′, γ) is (e2, d2)-depth robust for e2 = (1 − ε)M = (1 − ε)N1/(1+2ε), while
d2 = γM1−ε = (M2ε − δ)M1−ε. Since δ = O(Mε log2 M), for sufficiently large M ,
d2 = 0.9M1+ε = 0.9N

1+ε
1+2ε .

d1 = (δ + γ)k
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Technical Ingredients 3: Superconcentrators
Recall that we have the following upper and lower bounds for cc(GU ):

cc(GU ) ≥ e2d2, and

cc(GU ) ≤ min
g≥d1

(
e1N + gN × indeg(GU ) + N2d1

g

)
.

• Even after indegree reduction, still no gap between the pebbling complexity of the two cases.

e1N = 1
k

N
1

1+2ε N = 1
k

N
2+2ε
1+2ε ≫ (1 − ε)N

2+ε
1+2ε = e2d2.

Need to make it tighter!

Definition (Superconcentrator)
A superconcentrator is a graph that connects N input nodes to N output nodes so that any subset of k
inputs and k outputs are connected by k vertex-disjoint paths for all 1 ≤ k ≤ N . Moreover, the total
number of edges in the graph should be O(N).
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Technical Ingredients 3: Superconcentrator Overlay
Pippenger gives a superconcentrator with depth O(log N).

Lemma ([Pip77])
There exists a superconcentrator G with at most 42N vertices, containing N input vertices and N
output vertices, such that indeg(G) ≤ 16 and depth(G) ≤ log(42N).

Now we define the overlay of a superconcentrator on a graph G.

Definition (Superconcentrator Overlay)

Let G = (V (G), E(G)) be a fixed DAG with N vertices and GS = (V (GS), E(GS)) be a (priori fixed)
superconcentrator with N input vertices input(GS) = {i1, · · · , iN } ⊆ V (GS) and N output vertices
output(GS) = {o1, · · · , oN } ⊆ V (GS). We call a graph G′ = (V (GS), E(GS) ∪ EI ∪ EO) a
superconcentrator overlay where EI = {(iu, iv) : (u, v) ∈ E(G)} and EO = {(oi, oi+1) : 1 ≤ i < N}
and denote as G′ = superconc(G).

• We will denote the interior nodes as interior(G′) = G′ \ (input(G′) ∪ output(G′)) where
input(G′) = input(GS) and output(G′) = output(GS).
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Technical Ingredients 3: Superconcentrator Overlay
Example.

1 2 · · · ℓ · · · N

G

o1 o2 · · · oℓ · · · oN

superconcentrator

• • •

i1 i2 · · · iℓ · · · iN

• • •

•• •
• • •

GS

⇒ o1 o2 · · · oℓ · · · oN

superconcentrator

i1 i2 · · · iℓ · · · iN

G′ = superconc(G)
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Technical Ingredients 3: Superconcentrator Overlay
If G is (e, d)-depth robust, We have the following lower bound on the pebbling complexity from [BHK+18]:

cc(superconc(G)) ≥ min
{

eN

8 ,
dN

8

}
.

The following lemma provides a significantly tighter upper bound on cc(superconc(G)) with an improved
pebbling strategy.

Lemma (4.4)
Let G be an (e, d)-reducible graph with N vertices with indeg(G) = 2. Then

cc(superconc(G)) ≤ min
g≥d

{
2eN + 4gN + 43dN2

g
+ 24N2 log(42N)

g
+ 42N log(42N) + N

}
.

• Full description for the improved pebbling strategy: see the full paper! (Link)
• Now we can tune parameters appropriately to obtain our main result.
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Main Theorem: Unique Games Hardness of cc(G)

Theorem
Given a DAG G, it is Unique Games hard to approximate cc(G) within any constant factor.

Proof Sketch. Let k ≥ 2 be an integer that we shall later fix. Similarly, ε > 0 be a constant that we shall
later fix. Given a DAG G with N vertices, it is Unique Games hard to decide whether

• G is (e1, d1)-reducible for e1 = 1
k

N
1

1+2ε , d1 = kN
2ε

1+2ε , and

• G is (e2, d2)-depth robust for e2 = (1 − ε)N
1

1+2ε , d2 = 0.9N
1+ε

1+2ε .
• If G is (e1, d1)-reducible, then

cc(superconc(G)) ≤ min
g≥d1

{
2e1N + 4gN + 43d1N2

g
+ 24N2 log(42N)

g
+ 42N log(42N) + N

}
≤ 7

k
N

2+2ε
1+2ε (for g = e1 and sufficiently large N.)

• If G is (e2, d2)-depth robust, then cc(superconc(G)) ≥ min
{

e2N

8 ,
d2N

8

}
≥ 1 − ε

8 N
2+2ε
1+2ε .

Let c ≥ 1 be any constant. Setting ε = 1
2 and k = 102c2, we have

7
k

N
2+2ε
1+2ε = 1

16c2 N
2+2ε
1+2ε ≪ 1

16N
2+2ε
1+2ε = 1 − ε

8 N
2+2ε
1+2ε . □

(Corollary 3.5)

(Lemma 4.4)
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Open Questions

• What we showed: UG-Hard to c-approx for any c > 0.
◦ Worst case
◦ Do better for natural families of graphs?

• Possibility of bigger gap hardness of approximation (e.g. O(polylog(n))-approx?)

• Hardness of approximation for sequential pebblings?

• Approximation hardness from P ̸= NP?

• Is there any efficient c-approximation algorithm for Red-Blue pebbling where c = o(cb/cr)?
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Questions?
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