Approximating Cumulative Pebbling Cost is Unique Games Hard

Jeremiah Blocki, Seunghoon Lee, Samson Zhou

Department of Computer Science, Purdue University

June 21, 2019

Contents

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0) [The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0) [Svensson's Result of Unique Game Hardness](#page-30-0) Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

We are now at...

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0)

[The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0) [Svensson's Result of Unique Game Hardness](#page-30-0) Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

Consider a directed acyclic graph (DAG) $G = (V, E)$.

Goal: place pebbles on all sink nodes.

Pebbling Rules: $P = \{P_1, \dots, P_t\}$ ⊂ *V* where P_i ⊂ *V* denotes the number of pebbles in round *i*,

- $P_0 = \emptyset$, (initially, the graph is unpebbled)
- $\forall i \in [t], v \in P_i \setminus P_{i-1} \Rightarrow \text{parents}(v) \subseteq P_{i-1}, \text{and}$ (a new pebble can be added only if its parents were all pebbled in the previous round)
- *•* $\forall i \in [t], \quad |P_i \setminus P_{i-1}| < 1$. (only in the sequential pebbling game)
- *•* We will focus on the *parallel pebbling game* throughout this talk.

Consider a directed acyclic graph (DAG) $G = (V, E)$.

Goal: place pebbles on all sink nodes.

Pebbling Rules: $P = \{P_1, \dots, P_t\}$ ⊂ *V* where P_i ⊂ *V* denotes the number of pebbles in round *i*,

- $P_0 = \emptyset$, (initially, the graph is unpebbled)
- $\forall i \in [t], v \in P_i \setminus P_{i-1} \Rightarrow$ parents $(v) \subseteq P_{i-1}$, and (a new pebble can be added only if its parents were all pebbled in the previous round)
- *•* $\forall i \in [t], \quad |P_i \setminus P_{i-1}| < 1$. (only in the sequential pebbling game)
- *•* We will focus on the *parallel pebbling game* throughout this talk.

Example

$$
1\ \overrightarrow{}\ \overrightarrow{\phantom{
$$

Consider a directed acyclic graph (DAG) $G = (V, E)$.

Goal: place pebbles on all sink nodes.

Pebbling Rules: $P = \{P_1, \dots, P_t\}$ ⊂ *V* where P_i ⊂ *V* denotes the number of pebbles in round *i*,

- $P_0 = \emptyset$, (initially, the graph is unpebbled)
- $\forall i \in [t], v \in P_i \setminus P_{i-1} \Rightarrow \text{parents}(v) \subseteq P_{i-1}, \text{and}$ (a new pebble can be added only if its parents were all pebbled in the previous round)
- *•* $\forall i \in [t], \quad |P_i \setminus P_{i-1}| < 1$. (only in the sequential pebbling game)
- *•* We will focus on the *parallel pebbling game* throughout this talk.

Example

 $P_1 = {1, 2}$ (data values L_1 and L_2 stored in memory)

Consider a directed acyclic graph (DAG) $G = (V, E)$.

Goal: place pebbles on all sink nodes.

Pebbling Rules: $P = \{P_1, \dots, P_t\}$ ⊂ *V* where P_i ⊂ *V* denotes the number of pebbles in round *i*,

- $P_0 = \emptyset$, (initially, the graph is unpebbled)
- $\forall i \in [t], v \in P_i \setminus P_{i-1} \Rightarrow$ parents $(v) \subseteq P_{i-1}$, and (a new pebble can be added only if its parents were all pebbled in the previous round)
- *•* $\forall i \in [t], \quad |P_i \setminus P_{i-1}| < 1$. (only in the sequential pebbling game)
- *•* We will focus on the *parallel pebbling game* throughout this talk.

Example

$$
1\ \overrightarrow{)}\ \rightarrow\!\!\!\left(\begin{array}{c|c} 2 & \overrightarrow{)}\ \end{array}\right)\ \rightarrow\!\!\!\left(\begin{array}{c|c} 3 & \overrightarrow{)}\ \end{array}\right)\qquad P_3=\{3\}\ \text{(data value L_3 stored in memory)}
$$

Consider a directed acyclic graph (DAG) $G = (V, E)$.

Goal: place pebbles on all sink nodes.

Pebbling Rules: $P = \{P_1, \dots, P_t\}$ ⊂ *V* where P_i ⊂ *V* denotes the number of pebbles in round *i*,

- $P_0 = \emptyset$, (initially, the graph is unpebbled)
- $\forall i \in [t], v \in P_i \setminus P_{i-1} \Rightarrow \text{parents}(v) \subseteq P_{i-1}, \text{and}$ (a new pebble can be added only if its parents were all pebbled in the previous round)
- *•* $\forall i \in [t], \quad |P_i \setminus P_{i-1}| < 1$. (only in the sequential pebbling game)
- *•* We will focus on the *parallel pebbling game* throughout this talk.

Example

 15) $P_4 = \{3, 4\}$ (data values L_3 and L_4 stored in memory)

Consider a directed acyclic graph (DAG) $G = (V, E)$.

Goal: place pebbles on all sink nodes.

Pebbling Rules: $P = \{P_1, \dots, P_t\}$ ⊂ *V* where P_i ⊂ *V* denotes the number of pebbles in round *i*,

- $P_0 = \emptyset$, (initially, the graph is unpebbled)
- $\forall i \in [t], v \in P_i \setminus P_{i-1} \Rightarrow$ parents $(v) \subseteq P_{i-1}$, and (a new pebble can be added only if its parents were all pebbled in the previous round)
- *•* $\forall i \in [t], \quad |P_i \setminus P_{i-1}| < 1$. (only in the sequential pebbling game)
- *•* We will focus on the *parallel pebbling game* throughout this talk.

Example

1 2 3 4 5 *P*¹²³⁴⁵ = *{*135*},* 24(data value *}* (data values *L*¹³⁵ *L*stored in memory) ¹³ and *L*²⁴ stored in memory)

 $\mathsf{Let}\ \mathcal{P}^{\parallel}_{G}$ be the set of all valid \bm{p} arallel pebblings of $G.$

Definition

• The *cumulative cost of a pebbling* $P = (P_1, \dots, P_t) \in \mathcal{P}_G^{\mathbb{I}}$ is

 $\text{cc}(P) := |P_1| + \cdots + |P_t|$.

• The *cumulative pebbling cost of a graph G* is defined by

$$
\mathsf{cc}(G) = \min_{P \in \mathcal{P}_G^{\parallel}} \mathsf{cc}(P)
$$

 $\mathsf{Let}\ \mathcal{P}^{\parallel}_{G}$ be the set of all valid \bm{p} arallel pebblings of $G.$

Definition

• The *cumulative cost of a pebbling* $P = (P_1, \dots, P_t) \in \mathcal{P}_G^{\mathbb{I}}$ is

 $\text{cc}(P) := |P_1| + \cdots + |P_t|$.

• The *cumulative pebbling cost of a graph G* is defined by

$$
\mathsf{cc}(G) = \min_{P \in \mathcal{P}_G^{\parallel}} \mathsf{cc}(P)
$$

 $\mathsf{Let}\ \mathcal{P}^{\parallel}_{G}$ be the set of all valid \bm{p} arallel pebblings of $G.$

Definition

• The *cumulative cost of a pebbling* $P = (P_1, \dots, P_t) \in \mathcal{P}_G^{\mathbb{I}}$ is

 $\text{cc}(P) := |P_1| + \cdots + |P_t|$.

• The *cumulative pebbling cost of a graph G* is defined by

$$
\mathsf{cc}(G) = \min_{P \in \mathcal{P}_G^{\parallel}} \mathsf{cc}(P)
$$

 $\mathsf{Let}\ \mathcal{P}^{\parallel}_{G}$ be the set of all valid \bm{p} arallel pebblings of $G.$

Definition

• The *cumulative cost of a pebbling* $P = (P_1, \dots, P_t) \in \mathcal{P}_G^{\mathbb{I}}$ is

 $\text{cc}(P) := |P_1| + \cdots + |P_t|$.

• The *cumulative pebbling cost of a graph G* is defined by

$$
\mathsf{cc}(G) = \min_{P \in \mathcal{P}_G^{\parallel}} \mathsf{cc}(P)
$$

 $\mathsf{Let}\ \mathcal{P}^{\parallel}_{G}$ be the set of all valid \bm{p} arallel pebblings of $G.$

Definition

• The *cumulative cost of a pebbling* $P = (P_1, \dots, P_t) \in \mathcal{P}_G^{\mathbb{I}}$ is

 $\text{cc}(P) := |P_1| + \cdots + |P_t|$.

• The *cumulative pebbling cost of a graph G* is defined by

$$
\mathsf{cc}(G) = \min_{P \in \mathcal{P}_G^{\parallel}} \mathsf{cc}(P)
$$

 $\mathsf{Let}\ \mathcal{P}^{\parallel}_{G}$ be the set of all valid \bm{p} arallel pebblings of $G.$

Definition

• The *cumulative cost of a pebbling* $P = (P_1, \dots, P_t) \in \mathcal{P}_G^{\mathbb{I}}$ is

 $\text{cc}(P) := |P_1| + \cdots + |P_t|$.

• The *cumulative pebbling cost of a graph G* is defined by

$$
\mathsf{cc}(G) = \min_{P \in \mathcal{P}_G^{\parallel}} \mathsf{cc}(P)
$$

Applications of cc(*G*)

- *•* Password hashing Memory Hard Function (MHF) *f*
- A brute-force attacker wants to compute f_G on many inputs (m)
	- *◦* Involves pebbling a DAG *G m* times
	- *◦* Want total cost as large as possible

• Consider the Space×Time (ST)-Complexity $\mathsf{ST}(G) := \min_{P \in \mathcal{P}^{\parallel}_G} \left(t_P \times \max_{i \leq t_P} |P_i| \right).$ *G*

Theorem [AS15] (informal)

For a secure side channel resistant memory hard function for password hashing, it suffices to find a DAG *G* with *constant indegree* and *maximum* cc(*G*).

• Cryptanalysis of MHF *⇔* Find cc(*G*).

We are now at...

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0) [The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0) [Svensson's Result of Unique Game Hardness](#page-30-0) Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

The Main Result

- *•* Blocki and Zhou [BZ18] recently showed that computing cc(*G*) is NP-Hard. However, this does not rule out the existence of a $(1 + \varepsilon)$ -approximation algorithm for any constant $\varepsilon > 0$.
- *•* Our main result is the hardness of any constant factor approximation to the cost of graph pebbling even for DAGs with constant indegree.

Theorem

Given a DAG G with constant indegree, it is Unique Games hard to approximate cc(*G*) *within any constant factor.*

Strategy?

- *•* Svensson's result of Unique Games hardness to distinguish two cases for a DAG *G*
- Reduction to \widetilde{G} with *gap* between the upper and lower bound of $cc(\widetilde{G})$

Proof Overview

We are now at...

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0) [The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0) [Svensson's Result of Unique Game Hardness](#page-30-0) Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

Definition (Unique Games)

An instance of Unique Games $\mathcal{U} = (G = (V, W, E), [R], {\{\pi_v,w\}_v,w})$ consists of a regular bipartite graph $G(V, W, E)$ and a set $[R]$ of labels. Each edge $(v, w) \in E$ has a constraint given by a permutation $\pi_{v,w} : [R] \to [R]$. The goal is to output a labeling $\rho : (V \cup W) \to [R]$ that maximizes the number of satisfied edges, where an edge is satisfied if $\rho(v) = \pi_{v,w}(\rho(w))$.

Definition (Unique Games)

An instance of Unique Games $\mathcal{U} = (G = (V, W, E), [R], {\{\pi_v,w\}_v,w})$ consists of a regular bipartite graph $G(V, W, E)$ and a set $[R]$ of labels. Each edge $(v, w) \in E$ has a constraint given by a permutation π *v, w* : $[R] \rightarrow [R]$. The goal is to output a labeling ρ : $(V \cup W) \rightarrow [R]$ that maximizes the number of satisfied edges, where an edge is satisfied if $\rho(v) = \pi_{v,w}(\rho(w))$.

Example

$$
\pi_{v_1, w_1}: \{1, 2, 3, 4, 5\} \rightarrow \{2, 5, 1, 3, 4\}, \text{ (e.g. } \pi_{v_1, w_1}(1) = 2\}
$$
\n
$$
\pi_{v_1, w_3}: \{1, 2, 3, 4, 5\} \rightarrow \{3, 2, 5, 4, 1\},
$$
\n
$$
\pi_{v_2, w_2}: \{1, 2, 3, 4, 5\} \rightarrow \{4, 3, 2, 5, 1\},
$$
\n
$$
\pi_{v_2, w_3}: \{1, 2, 3, 4, 5\} \rightarrow \{3, 1, 4, 5, 2\}.
$$

Definition (Unique Games)

An instance of Unique Games $\mathcal{U} = (G = (V, W, E), [R], {\{\pi_v,w\}_v,w})$ consists of a regular bipartite graph $G(V, W, E)$ and a set $[R]$ of labels. Each edge $(v, w) \in E$ has a constraint given by a permutation π *v, w* : $[R] \rightarrow [R]$. The goal is to output a labeling ρ : $(V \cup W) \rightarrow [R]$ that maximizes the number of satisfied edges, where an edge is satisfied if $\rho(v) = \pi_{v,w}(\rho(w))$.

Example

$$
\pi_{v_1, w_1}: \{1, 2, 3, 4, 5\} \rightarrow \{2, 5, 1, 3, 4\}, \text{ (e.g. } \pi_{v_1, w_1}(1) = 2\}
$$
\n
$$
\pi_{v_1, w_3}: \{1, 2, 3, 4, 5\} \rightarrow \{3, 2, 5, 4, 1\},
$$
\n
$$
\pi_{v_2, w_2}: \{1, 2, 3, 4, 5\} \rightarrow \{4, 3, 2, 5, 1\},
$$
\n
$$
\pi_{v_2, w_3}: \{1, 2, 3, 4, 5\} \rightarrow \{3, 1, 4, 5, 2\}.
$$

Definition (Unique Games)

An instance of Unique Games $\mathcal{U} = (G = (V, W, E), [R], {\{\pi_v,w\}_v,w})$ consists of a regular bipartite graph $G(V, W, E)$ and a set $[R]$ of labels. Each edge $(v, w) \in E$ has a constraint given by a permutation π *v, w* : $[R] \rightarrow [R]$. The goal is to output a labeling ρ : $(V \cup W) \rightarrow [R]$ that maximizes the number of satisfied edges, where an edge is satisfied if $\rho(v) = \pi_{v,w}(\rho(w))$.

Example

$$
\pi_{v_1, w_1}: \{1, 2, 3, 4, 5\} \rightarrow \{2, 5, 1, 3, 4\}, \text{ (e.g. } \pi_{v_1, w_1}(1) = 2\}
$$
\n
$$
\pi_{v_1, w_3}: \{1, 2, 3, 4, 5\} \rightarrow \{3, 2, 5, 4, 1\},
$$
\n
$$
\pi_{v_2, w_2}: \{1, 2, 3, 4, 5\} \rightarrow \{4, 3, 2, 5, 1\},
$$
\n
$$
\pi_{v_2, w_3}: \{1, 2, 3, 4, 5\} \rightarrow \{3, 1, 4, 5, 2\}.
$$

Definition (Unique Games)

An instance of Unique Games $\mathcal{U} = (G = (V, W, E), [R], {\{\pi_v,w\}_v,w})$ consists of a regular bipartite graph $G(V, W, E)$ and a set $[R]$ of labels. Each edge $(v, w) \in E$ has a constraint given by a permutation π *v, w* : $[R] \rightarrow [R]$. The goal is to output a labeling ρ : $(V \cup W) \rightarrow [R]$ that maximizes the number of satisfied edges, where an edge is satisfied if $\rho(v) = \pi_{v,w}(\rho(w))$.

Example

$$
\pi_{v_1, w_1}: \{1, 2, 3, 4, 5\} \rightarrow \{2, 5, 1, 3, 4\}, \text{ (e.g. } \pi_{v_1, w_1}(1) = 2\}
$$
\n
$$
\pi_{v_1, w_3}: \{1, 2, 3, 4, 5\} \rightarrow \{3, 2, 5, 4, 1\},
$$
\n
$$
\pi_{v_2, w_2}: \{1, 2, 3, 4, 5\} \rightarrow \{4, 3, 2, 5, 1\},
$$
\n
$$
\pi_{v_2, w_3}: \{1, 2, 3, 4, 5\} \rightarrow \{3, 1, 4, 5, 2\}.
$$

Definition (Unique Games)

An instance of Unique Games $\mathcal{U} = (G = (V, W, E), [R], \{\pi_{v,w}\}_{v,w})$ consists of a regular bipartite graph $G(V, W, E)$ and a set [R] of labels. Each edge $(v, w) \in E$ has a constraint given by a permutation $\pi_{v,w} : [R] \to [R]$. The goal is to output a labeling $\rho : (V \cup W) \to [R]$ that maximizes the number of satisfied edges, where an edge is satisfied if $\rho(v) = \pi_{v,w}(\rho(w))$.

The following conjecture from [Kho02] has been extensively used to prove several strong hardness of approximation algorithm.

Conjecture (Unique Games Conjecture) [Kho02]

For any constants α , $\beta > 0$, there exists a sufficiently large integer R (as a function of α , β) such that for Unique Games instance with label set [*R*], no polynomial time algorithm can distinguish whether:

- 1. (completeness) the maximum fraction of satisfied edges of any labeling is at least 1α , or
- 2. (soundness) the maximum fraction of satisfied edges of any labeling is less than *β*.
- *•* Approximation algorithm for cc(*G*)?

We are now at...

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0) [The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0)

[Svensson's Result of Unique Game Hardness](#page-30-0) Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

Technical Ingredients 0: Depth Robustness (*↔* Depth Reducibility)

First, we define depth(G) to be the length of the longest directed path in a DAG G .

Definition

• A DAG $G = (V, E)$ is (e, d) -depth robust if

$$
\forall S \subseteq V \text{ s.t. } |S| \leq e \;\; \Rightarrow \;\; \mathsf{depth}(G-S) \geq d.
$$

• We say that *G* is (*e, d*)*-reducible* if *G* is not (*e, d*)-depth robust. That is,

 $\exists S \subseteq V$ s.t. $|S| \leq e$ and depth $(G - S) \leq d$.

Example

The following graph is $(e = 2, d = 2)$ -reducible:

Technical Ingredients 0: Depth Robustness (*↔* Depth Reducibility)

First, we define depth(G) to be the length of the longest directed path in a DAG G .

Definition

• A DAG $G = (V, E)$ is (e, d) -depth robust if

$$
\forall S \subseteq V \text{ s.t. } |S| \leq e \;\; \Rightarrow \;\; \mathsf{depth}(G-S) \geq d.
$$

• We say that *G* is (*e, d*)*-reducible* if *G* is not (*e, d*)-depth robust. That is,

 $\exists S \subseteq V$ s.t. $|S| \leq e$ and depth $(G - S) \leq d$.

Example

The following graph is $(e = 2, d = 2)$ -reducible:

$$
1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6
$$

Technical Ingredients 0: Depth Robustness (*↔* Depth Reducibility)

First, we define depth(G) to be the length of the longest directed path in a DAG G .

Definition

• A DAG $G = (V, E)$ is (e, d) -depth robust if

$$
\forall S \subseteq V \text{ s.t. } |S| \le e \Rightarrow \text{ depth}(G - S) \ge d.
$$

• We say that *G* is (*e, d*)*-reducible* if *G* is not (*e, d*)-depth robust. That is,

 $\exists S \subseteq V$ s.t. $|S| \leq e$ and depth $(G - S) \leq d$.

A few facts about depth robustness:

• [AB16] For any (*e, d*)-reducible DAG *G* with *N* nodes,

$$
\mathsf{cc}(G) \le \min_{g \ge d} \left(e N + g N \times \mathsf{indeg}(G) + \frac{N^2 d}{g} \right).
$$

• [ABP17] For any (*e, d*)-depth robust DAG *G*,

$$
\mathsf{cc}(G) \geq ed.
$$

We are now at...

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0) [The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0) [Svensson's Result of Unique Game Hardness](#page-30-0)

Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

Technical Ingredients 1: Svensson's Result of Unique Game Hardness

Svensson [Sve12] proved the Unique Games hardness of a DAG *G*:

Theorem [Sve12]

For any constant $k, \varepsilon > 0$, it is Unique Games hard to distinguish between whether

- 1. *G* is (e_1, d_1) -reducible with $e_1 = N/k$ and $d_1 = k$, and
- 2. G is (e_2,d_2) -depth robust with $e_2=N(1-1/k)$ and $d_2=\Omega(N^{1-\varepsilon}).$
- To prove this, reduction from an instance of Unique Games $\mathcal{U} = (G = (V, W, E), [R], \{ \pi_v, w\}$ *v*,*w*) to a DAG G_U on N nodes.
	- *◦ G* is (*e*1*, d*1)-reducible if *U* is satisfiable, and
	- *◦ G* is (*e*2*, d*2)-depth robust if *U* is unsatisfiable.
- As mentioned before, we have nice upper and lower bounds for $cc(G)$ from [ABP17] and [AB16]:

Theorem

- *•* [ABP17] For any (*e, d*)-depth robust DAG *G*, we have cc(*G*) *≥ ed*.
- *•* [AB16] For any (*e, d*)-reducible DAG *G* with *N* nodes, we have ${\sf cc}(G) \le \min_{g \ge d} \Big(eN + gN \times {\sf indeg}(G) + \frac{N^2d}{g}\Big).$

Technical Ingredients 1: Svensson's Result of Unique Game Hardness

Svensson [Sve12] proved the Unique Games hardness of a DAG *G*:

Theorem [Sve12]

For any constant $k, \varepsilon > 0$, it is Unique Games hard to distinguish between whether

- 1. *G* is (e_1, d_1) -reducible with $e_1 = N/k$ and $d_1 = k$, and
- 2. G is (e_2,d_2) -depth robust with $e_2=N(1-1/k)$ and $d_2=\Omega(N^{1-\varepsilon}).$
- To prove this, reduction from an instance of Unique Games $\mathcal{U} = (G = (V, W, E), [R], \{ \pi_v, w\}$ *v*,*w*) to a DAG G_U on N nodes.
	- *◦ G* is (*e*1*, d*1)-reducible if *U* is satisfiable, and
	- *◦ G* is (*e*2*, d*2)-depth robust if *U* is unsatisfiable.
- As mentioned before, we have nice upper and lower bounds for $cc(G)$ from [ABP17] and [AB16]:

Theorem

- *•* [ABP17] For any (*e, d*)-depth robust DAG *G*, we have cc(*G*) *≥ ed*.
- *•* [AB16] For any (*e, d*)-reducible DAG *G* with *N* nodes, we have ${\sf cc}(G) \le \min_{g \ge d} \Big(eN + gN \times {\sf indeg}(G) + \frac{N^2d}{g}\Big).$
- Why can't we directly use this result to obtain our result (UG hardness of approximability of cc(*G*)?)

Technical Ingredients 1: Svensson's Result of Unique Game Hardness

Theorem [Sve12]

For any integer *k ≥* 2 and constant *ε >* 0, it is Unique Games hard to distinguish between whether

- 1. *G* is (e_1, d_1) -reducible with $e_1 = N/k$ and $d_1 = k$, and
- 2. G is (e_2,d_2) -depth robust with $e_2=N(1-1/k)$ and $d_2=\Omega(N^{1-\varepsilon}).$

Challenges of Applying Svensson's Construction

The result of Alwen et al. [ABP17] and [AB16] tells us that

• $\textsf{cc}(G_{\mathcal{U}}) \geq e_2 d_2$, and

$$
\bullet\ \ \textsf{cc}(G_\mathcal U)\leq \min_{g\geq d_1}\left(e_1N+gN\times \textsf{indeg}(G_\mathcal U)+\frac{N^2d_1}{g}\right)
$$

 \Rightarrow no gap between the upper/lower bounds since indeg $(G_{\mathcal{U}}) = \mathcal{O}(N)$ implies

$$
gN \times \text{indeg}(G_{\mathcal{U}}) = gN^2 \gg e_2 d_2.
$$

⇒ need to reduce the indegree (how? using *γ*-extreme depth-robust graphs.)

- 1. The graph \hat{G}_U contains two types of vertices:
	- **○** bit-vertices partitioned into bit-layers $B = B_0 \cup \cdots \cup B_L$,
	- *◦* test-vertices partitioned into test-layers *T* = *T*⁰ *∪ · · · ∪ TL−*1, and
	- *◦* all of the edges in the graph are between bit-vertices and test-vertices.

- 1. The graph \hat{G}_U contains two types of vertices:
	- *◦* bit-vertices partitioned into bit-layers *B* = *B*⁰ *∪ · · · ∪ BL*,
	- *◦* test-vertices partitioned into test-layers *T* = *T*⁰ *∪ · · · ∪ TL−*1, and
	- *◦* all of the edges in the graph are between bit-vertices and test-vertices.
- 2. \hat{G}_U shows symmetry between the layers:
	- $B_\ell=\{b_1^\ell,\cdots,b_m^\ell\}$ and $T_\ell=\{t_1^\ell,\cdots,t_p^\ell\}$ (# of bit- and test-vertices in each layer is the same)
	- *◦* The edges between *B^ℓ* and *T^ℓ* (resp. *T^ℓ* and *Bℓ*+1) encode the edge constraints in the UG instance *U*.
	- \circ The directed edge (b_i^ℓ,t_j^ℓ) exists $\Leftrightarrow \forall \ell'\geq \ell$ the edge $(b_i^\ell,t_j^{\ell'})$ exists.
	- \circ The directed edge $(t^{\ell}_j, b^{\ell+1}_i)$ exists $\Leftrightarrow \forall \ell' > \ell$ the edge $(t^{\ell}_j, b^{\ell'}_i)$ exists.

- 1. The graph \hat{G}_U contains two types of vertices:
	- *◦* bit-vertices partitioned into bit-layers *B* = *B*⁰ *∪ · · · ∪ BL*,
	- *◦* test-vertices partitioned into test-layers *T* = *T*⁰ *∪ · · · ∪ TL−*1, and
	- *◦* all of the edges in the graph are between bit-vertices and test-vertices.
- 2. \hat{G}_U shows symmetry between the layers:
	- $B_\ell=\{b_1^\ell,\cdots,b_m^\ell\}$ and $T_\ell=\{t_1^\ell,\cdots,t_p^\ell\}$ (# of bit- and test-vertices in each layer is the same)
	- *◦* The edges between *B^ℓ* and *T^ℓ* (resp. *T^ℓ* and *Bℓ*+1) encode the edge constraints in the UG instance *U*.
	- \circ The directed edge (b_i^ℓ,t_j^ℓ) exists $\Leftrightarrow \forall \ell'\geq \ell$ the edge $(b_i^\ell,t_j^{\ell'})$ exists.
	- \circ The directed edge $(t^{\ell}_j, b^{\ell+1}_i)$ exists $\Leftrightarrow \forall \ell' > \ell$ the edge $(t^{\ell}_j, b^{\ell'}_i)$ exists.
- 3. The number of layers $L = N^{1-\varepsilon}$.

- $\bullet \ \ C_{x,S}=\{z\in [k]^R:z_j=x_j\ \forall j\not\in S\},$ (the sub-cube whose coordinates not in S are fixed according to x)
- $\bullet \ \ C_{x,S,v,w}=\{z\in [k]^R:z_j=x_{\pi_{v,w}(j)}\ \forall \pi_{v,w}(j)\not\in S\}$, (the image of the sub-cube $C_{x,S}$ under $\pi_{v,w}$)
- *• C ⊕ x,S* = *{z ⊕* 1 : *z ∈ Cx,S}*, (where *⊕* denotes coordinate-wise addition modulo *k*)

•
$$
C_{x,S,v,w}^{\oplus} = \{z \oplus 1 : z \in C_{x,S,v,w}\}.
$$

Svensson's Construction for the Graph $\hat{G}_\mathcal{U}$

We fix *k* to be an integer and *ε, δ >* 0 to be arbitratily small constants. For some *L* to be fixed,

- \bullet There are $L+1$ layers of bit-vertices. Each set of bit-vertices B_ℓ with $0\leq \ell\leq L$ contains $b^\ell_{w,x}$ for e ach $w \in W$ and $x \in [k]^R$.
- *•* There are *L* layers of test-vertices. Each set of test-vertices *T^ℓ* with 0 *≤ ℓ ≤ L −* 1 contains $t^{\ell}_{x,S,v,w_1,\cdots,w_{2t}}$ for each $x\in[k]^R,S=(s_1,\cdots,s_{\varepsilon R})\in[R]^{\varepsilon R},v\in V$ and every sequence of (w_1, \dots, w_{2t}) (not necessarily distinct) neighbors of *v*.
- $\bullet\,$ If $\ell\leq\ell'$ and $z\in C_{x,S,v,w_j},$ then add an edge from $b^\ell_{w_j,z}$ to $t^{\ell'}_{x,S,v,w_1,\cdots,w_{2t}}$ for each $1\leq j\leq 2t.$
- \bullet If $\ell>\ell'$ and $z\in C^\oplus_{x,S,v,w_j},$ then add an edge from $t^{\ell'}_{x,S,v,w_1,\cdots,w_{2t}}$ to $b^\ell_{w_j,z}$ for each $1\leq j\leq 2t.$
- *•* If $T = |T_0 \cup \cdots \cup T_{L-1}|$, then L is selected so that $\delta^2 L \geq T^{1-\delta}$.

 \Rightarrow indeg($\hat{G}_\mathcal{U}$) ≥ *L* (and can be as large as $\Omega(N)$ in general.) Need to reduce indegree!

We are now at...

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0) [The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0) [Svensson's Result of Unique Game Hardness](#page-30-0) Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

Technical Ingredients 2: *γ*-Extreme Depth Robust Graphs (Indegree Reduction)

• As discussed before, Svensson's construction has too large indegree (*O*(*N*)) for the purposes of bounding $cc(G)$. How to reduce indegree?

Definition

A DAG *Gγ,N* on *N* nodes is said to be *γ-extreme depth-robust* if it is (*e, d*)-depth robust for any *e, d >* 0 such that $e + d \leq (1 - \gamma)N$.

- \bullet Alwen e t al. [ABP18] showed that for any constant $\gamma > 0$, there exists a family $\{G_{\gamma,N}\}_{N=1}^\infty$ of *γ*-extreme depth-robust DAGs with maximum indegree and outdegree *O*(log *N*).
- \bullet Then Sparsify ${}_{G_{\gamma,L+1}}(\hat{G}_\mathcal{U})$ will have degree at most $\mathcal{O}(\textsf{indeg}(G_{\gamma,L+1}) \times \textsf{outdeg}(G_{\gamma,L+1}) \times N/(L+1)) = \mathcal{O}(N^{\varepsilon} \log^2 N).$

Technical Ingredients 2: *γ*-Extreme Depth Robust Graphs (Indegree Reduction)

Technical Ingredients 2: *γ*-Extreme Depth Robust Graphs (Indegree Reduction)

Theorem [Sve12]

For any integer *k ≥* 2 and constant *ε >* 0, it is Unique Games hard to distinguish between whether

- 1. *G* is (e_1, d_1) -reducible with $e_1 = N/k$ and $d_1 = k$, and
- 2. G is (e_2,d_2) -depth robust with $e_2=N(1-1/k)$ and $d_2=\Omega(N^{1-\varepsilon}).$

- \bullet Indegree Reduction with Sparsify $_{G_{\gamma,L+1}}(\hat{G}_\mathcal{U})$
- *•* Analysis with Graph Coloring and Weighted Depth Robustness

Theorem (3.3)

For any integer $k > 2$ *and constant* $\varepsilon > 0$, given a DAG G with N vertices and $\mathsf{indeg}(G) = \mathcal{O}(N^{\varepsilon} \log^2 N)$, it is Unique Games hard to distinguish between the following cases:

- *• (Completeness): G is* ((¹*−^ε k*) *N, k*) *-reducible.*
- *• (Soundness): G is* ((1 *− ε*)*N, N*¹*−^ε*)*-depth robust.*

Obtaining DAGs with Constant Indegree

- *•* The second indegree reduction procedure IDR(*G, γ*) replaces each node *v ∈ V* with a path $P_v = v_1, \dots, v_{\delta + \gamma}$, where $\delta = \text{indeg}(G)$.
- *•* For each edge $(u, v) \in E$, we add the edge $(u_{\delta+\gamma}, v_j)$ whenever (u, v) is the j^{th} incoming edge of v .
- We observe that $\mathsf{indeg}(\mathsf{IDR}(G, \gamma)) = 2$.

Lemma ([ABP17])

- *If G* is (e, d) -reducible, then $IDR(G, \gamma)$ is $(e, (\delta + \gamma)d)$ -reducible.
- *If G* is (e, d) -depth robust, then $IDR(G, \gamma)$ is $(e, \gamma d)$ -depth robust.

Putting 1 and 2 Together: UG Hardness for DAGs with Constant Indegree

Corollary (3.5)

For any integer $k > 2$ *and constant* $\varepsilon > 0$, given a DAG G with N vertices and $\text{indeg}(G) = 2$, it is *Unique Games hard to decide whether G is* (e_1, d_1) -reducible or (e_2, d_2) -depth robust for

• (Completeness):
$$
e_1 = \frac{1}{k} N^{\frac{1}{1+2\varepsilon}}
$$
 and $d_1 = k N^{\frac{2\varepsilon}{1+2\varepsilon}}$.

• (Soundness):
$$
e_2 = (1 - \varepsilon)N^{\frac{1}{1+2\varepsilon}}
$$
 and $d_2 = 0.9N^{\frac{1+\varepsilon}{1+2\varepsilon}}$.

 ${\sf Proof~S}$ ketch. Suppose G' is a graph with M vertices. With setting $\gamma = M^{2\varepsilon}-\delta$,

 G' with M vertices \longrightarrow $G = \mathsf{IDR}(G',\gamma)$ with $(\delta+\gamma)M = M^{1+2\varepsilon} = N$ vertices

or equivalently, $M=N^{\frac{1}{1+2\varepsilon}}.$ By the previous Lemma, • $G = \textsf{IDR}(G', \gamma)$ is (e_1, d_1) -reducible for $e_1 = \frac{M}{k} = \frac{N^{1/(1+2\varepsilon)}}{k}$ and $\frac{d}{d_1} = kM^{2\varepsilon} = kN^{\frac{2\varepsilon}{1+2\varepsilon}}$. \bullet *G* = IDR(*G'* , γ) is (*e*₂, *d*₂)-depth robust for *e*₂ = (1 − *ε*) M = (1 − *ε*) $N^{1/(1+2ε)}$, while $d_2 = \gamma M^{1-\varepsilon} = (M^{2\varepsilon}-\delta)M^{1-\varepsilon}.$ Since $\delta = \mathcal{O}(M^\varepsilon \log^2 M),$ for sufficiently large $M,$ $d_2 = 0.9M^{1+\varepsilon} = 0.9N^{\frac{1+\varepsilon}{1+2\varepsilon}}.$ $d_1 \rightarrow d_1 = (\delta + \gamma)k$

 \Box

We are now at...

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0) [The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0) [Svensson's Result of Unique Game Hardness](#page-30-0) Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

Technical Ingredients 3: Superconcentrators

Recall that we have the following upper and lower bounds for $cc(G_{\mathcal{U}})$:

$$
\operatorname{cc}(G_{\mathcal U}) \geq e_2 d_2, \text{ and}
$$

$$
\operatorname{cc}(G_{\mathcal U}) \leq \min_{g \geq d_1} \left(e_1 N + g N \times \operatorname{indeg}(G_{\mathcal U}) + \frac{N^2 d_1}{g}\right).
$$

• Even after indegree reduction, still no gap between the pebbling complexity of the two cases.

$$
e_1 N = \frac{1}{k} N^{\frac{1}{1+2\varepsilon}} N = \frac{1}{k} N^{\frac{2+2\varepsilon}{1+2\varepsilon}} \gg (1-\varepsilon) N^{\frac{2+\varepsilon}{1+2\varepsilon}} = e_2 d_2.
$$

Technical Ingredients 3: Superconcentrators

Recall that we have the following upper and lower bounds for $cc(G_{\mathcal{U}})$:

 $\frac{1}{2}$ cc(*G_U*) $\geq e_2d_2$, and $\mathsf{cc}(G_\mathcal{U}) \leq \min_{g \geq d_1}$ $\left(e_1N+gN\times \text{indeg}(G_{\mathcal{U}})+\frac{N^2d_1}{a}\right)$ *g*) *.* • Even after indegree reduction, still no gap between the pebbling complexity of the two cases. $e_1N=\frac{1}{L}$ $\frac{1}{k}N^{\frac{1}{1+2\varepsilon}}N=\frac{1}{k}$ $\frac{1}{k}N^{\frac{2+2\varepsilon}{1+2\varepsilon}} \gg (1-\varepsilon)N^{\frac{2+\varepsilon}{1+2\varepsilon}} = e_2d_2.$

Need to make it tighter!

Technical Ingredients 3: Superconcentrators

Recall that we have the following upper and lower bounds for $cc(G_{\mathcal{U}})$:

 $\frac{1}{2}$ cc($G_{\mathcal{U}}$) $\geq e_2d_2$, and $\mathsf{cc}(G_\mathcal{U}) \leq \min_{g \geq d_1}$ $\left(e_1N+gN\times \text{indeg}(G_{\mathcal{U}})+\frac{N^2d_1}{a}\right)$ *g*) *.* • Even after indegree reduction, still no gap between the pebbling complexity of the two cases. $e_1N=\frac{1}{L}$ $\frac{1}{k}N^{\frac{1}{1+2\varepsilon}}N=\frac{1}{k}$ $\frac{1}{k}N^{\frac{2+2\varepsilon}{1+2\varepsilon}} \gg (1-\varepsilon)N^{\frac{2+\varepsilon}{1+2\varepsilon}} = e_2d_2.$

Need to make it tighter!

Definition (Superconcentrator)

A *superconcentrator* is a graph that connects *N* input nodes to *N* output nodes so that any subset of *k* inputs and *k* outputs are connected by *k* vertex-disjoint paths for all 1 *≤ k ≤ N*. Moreover, the total number of edges in the graph should be *O*(*N*).

Technical Ingredients 3: Superconcentrator Overlay

Pippenger gives a superconcentrator with depth *O*(log *N*).

Lemma ([Pip77])

There exists a superconcentrator G with at most 42*N vertices, containing N input vertices and N output vertices, such that* indeg(*G*) \leq 16 *and* depth(*G*) \leq log(42*N*)*.*

Now we define the overlay of a superconcentrator on a graph *G*.

Definition (Superconcentrator Overlay)

Let $G = (V(G), E(G))$ be a fixed DAG with N vertices and $G_S = (V(G_S), E(G_S))$ be a (priori fixed) superconcentrator with N input vertices input $(G_S) = \{i_1, \dots, i_N\} \subseteq V(G_S)$ and N output vertices $\mathsf{output}(G_S) = \{o_1, \cdots, o_N\} \subseteq V(G_S).$ We call a graph $G' = (V(G_S), E(G_S) \cup E_I \cup E_O)$ a superconcentrator overlay where $E_I = \{(i_u, i_v) : (u, v) \in E(G)\}\$ and $E_O = \{(o_i, o_{i+1}) : 1 \leq i \leq N\}\$ and denote as $G' = \mathsf{superconc}(G).$

• We will denote the interior nodes as interior($G') = G' \setminus (\mathsf{input}(G') \cup \mathsf{output}(G'))$ where $\mathsf{input}(G') = \mathsf{input}(G_S)$ and $\mathsf{output}(G') = \mathsf{output}(G_S).$

Technical Ingredients 3: Superconcentrator Overlay

Example.

Technical Ingredients 3: Superconcentrator Overlay

If G is (e,d) -depth robust, We have the following lower bound on the pebbling complexity from [BHK⁺18]:

$$
\mathsf{cc}(\mathsf{superconc}(G)) \ge \min\left\{\frac{eN}{8},\frac{dN}{8}\right\}.
$$

The following lemma provides a *significantly tighter* upper bound on cc(superconc(*G*)) with an improved pebbling strategy.

Lemma (4.4)

Let *G* be an (e, d) -reducible graph with *N* vertices with indeg(*G*) = 2. Then

$$
\mathsf{cc}(\mathsf{superconc}(G)) \le \min_{g \ge d} \left\{ 2eN + 4gN + \frac{43dN^2}{g} + \frac{24N^2\log(42N)}{g} + 42N\log(42N) + N \right\}.
$$

- Full description for the improved pebbling strategy: see the full paper! [\(Link\)](https://arxiv.org/pdf/1904.08078.pdf)
- *•* Now we can tune parameters appropriately to obtain our main result.

We are now at...

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0) [The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0) [Svensson's Result of Unique Game Hardness](#page-30-0) Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

Main Theorem: Unique Games Hardness of cc(*G*)

Theorem

Given a DAG G, it is Unique Games hard to approximate cc(*G*) *within any constant factor.*

Proof Sketch. Let *k ≥* 2 be an integer that we shall later fix. Similarly, *ε >* 0 be a constant that we shall later fix. Given a DAG *G* with *N* vertices, it is Unique Games hard to decide whether

- *G* is (e_1, d_1) -reducible for $e_1 = \frac{1}{k}N^{\frac{1}{1+2\varepsilon}}$, $d_1 = kN^{\frac{2\varepsilon}{1+2\varepsilon}}$, and
- *G* is (e_2, d_2) -depth robust for $e_2 = (1 \varepsilon)N^{\frac{1}{1+2\varepsilon}}$, $d_2 = 0.9N^{\frac{1+\varepsilon}{1+2\varepsilon}}$.
- If G is (e_1, d_1) -reducible, then

$$
\begin{aligned} \mathsf{cc}(\mathsf{superconc}(G)) & \leq \min_{g \geq d_1} \left\{ 2e_1 N + 4g N + \frac{43d_1 N^2}{g} + \frac{24N^2 \log(42N)}{g} + 42N \log(42N) + N \right\} \\ & \leq \frac{7}{k} N^{\frac{2+2\varepsilon}{1+2\varepsilon}} \quad \text{(for $g=e_1$ and sufficiently large N.)} \end{aligned}
$$

 \bullet If *G* is (e_2, d_2) -depth robust, then $\mathsf{cc}(\mathsf{superconc}(G)) \ge \min\left\{\frac{e_2N}{2}\right\}$ $\frac{d_2N}{8}, \frac{d_2N}{8}$ 8 } *≥* 1 *− ε* $\frac{-\varepsilon}{8}N^{\frac{2+2\varepsilon}{1+2\varepsilon}}$. Let $c \geq 1$ be any constant. Setting $\varepsilon = \frac{1}{2}$ and $k = 102c^2$, we have

$$
\frac{7}{k}N^{\frac{2+2\varepsilon}{1+2\varepsilon}} = \frac{1}{16c^2}N^{\frac{2+2\varepsilon}{1+2\varepsilon}} \ll \frac{1}{16}N^{\frac{2+2\varepsilon}{1+2\varepsilon}} = \frac{1-\varepsilon}{8}N^{\frac{2+2\varepsilon}{1+2\varepsilon}}.
$$

Theorem

Given a DAG G, it is Unique Games hard to approximate cc(*G*) *within any constant factor.*

Proof Sketch. Let *k ≥* 2 be an integer that we shall later fix. Similarly, *ε >* 0 be a constant that we shall later fix. Given a DAG *G* with *N* vertices, it is Unique Games hard to decide whether • *G* is (e_1, d_1) -reducible for $e_1 = \frac{1}{k}N^{\frac{1}{1+2\varepsilon}}$, $d_1 = kN^{\frac{2\varepsilon}{1+2\varepsilon}}$, and • *G* is (e_2, d_2) -depth robust for $e_2 = (1 - \varepsilon)N^{\frac{1}{1+2\varepsilon}}$, $d_2 = 0.9N^{\frac{1+\varepsilon}{1+2\varepsilon}}$. • If \overline{G} is (e_1, d_1) -reducible, then $\mathsf{cc}(\mathsf{superconc}(G)) \leq \min_{g \geq d_1}$ \bar{f} $2e_1N + 4gN + \frac{43d_1N^2}{r^2}$ $\frac{d_1N^2}{g} + \frac{24N^2\log(42N)}{g}$ $\left\{\frac{\log(42N)}{g} + 42N\log(42N) + N\right\}$ *≤* 7 $\frac{7}{k}N^{\frac{2+2\varepsilon}{1+2\varepsilon}}$ (for $g=e_1$ and sufficiently large *N*.) (Corollary 3.5) (Lemma 4.4)

 \bullet If *G* is (e_2, d_2) -depth robust, then $\mathsf{cc}(\mathsf{superconc}(G)) \ge \min\left\{\frac{e_2N}{2}\right\}$ $\frac{d_2N}{8}, \frac{d_2N}{8}$ 8 } *≥* 1 *− ε* $\frac{-\varepsilon}{8}N^{\frac{2+2\varepsilon}{1+2\varepsilon}}$. Let $c \geq 1$ be any constant. Setting $\varepsilon = \frac{1}{2}$ and $k = 102c^2$, we have

$$
\frac{7}{k}N^{\frac{2+2\varepsilon}{1+2\varepsilon}} = \frac{1}{16c^2}N^{\frac{2+2\varepsilon}{1+2\varepsilon}} \ll \frac{1}{16}N^{\frac{2+2\varepsilon}{1+2\varepsilon}} = \frac{1-\varepsilon}{8}N^{\frac{2+2\varepsilon}{1+2\varepsilon}}.
$$

We are now at...

[Introduction](#page-2-0)

[Graph Pebbling and Cumulative Pebbling Cost](#page-2-0) [The Main Result](#page-16-0) [Unique Games Conjecture](#page-19-0)

[Technical Ingredients](#page-26-0)

[Depth Robustness of a Graph](#page-26-0) [Svensson's Result of Unique Game Hardness](#page-30-0) Reducing the Indegree: *γ*[-Extreme Depth Robust Graphs](#page-40-0) [Superconcentrators / Superconcentrators Overlay](#page-46-0)

[The Main Result and Concluding Remark](#page-53-0)

[Main Theorem: Unique Games Hardness of](#page-53-0) cc(*G*) [Open Questions](#page-56-0)

- *•* What we showed: UG-Hard to *c*-approx for any *c >* 0.
	- *◦* Worst case
	- *◦* Do better for natural families of graphs?

- *•* What we showed: UG-Hard to *c*-approx for any *c >* 0.
	- *◦* Worst case
	- *◦* Do better for natural families of graphs?
- *•* Possibility of bigger gap hardness of approximation (e.g. *O*(polylog(*n*))-approx?)

- *•* What we showed: UG-Hard to *c*-approx for any *c >* 0.
	- *◦* Worst case
	- *◦* Do better for natural families of graphs?
- *•* Possibility of bigger gap hardness of approximation (e.g. *O*(polylog(*n*))-approx?)
- *•* Hardness of approximation for sequential pebblings?

- *•* What we showed: UG-Hard to *c*-approx for any *c >* 0.
	- *◦* Worst case
	- *◦* Do better for natural families of graphs?
- *•* Possibility of bigger gap hardness of approximation (e.g. *O*(polylog(*n*))-approx?)
- *•* Hardness of approximation for sequential pebblings?
- Approximation hardness from $P \neq NP$?

- *•* What we showed: UG-Hard to *c*-approx for any *c >* 0.
	- *◦* Worst case
	- *◦* Do better for natural families of graphs?
- *•* Possibility of bigger gap hardness of approximation (e.g. *O*(polylog(*n*))-approx?)
- *•* Hardness of approximation for sequential pebblings?
- Approximation hardness from $P \neq NP$?
- Is there any efficient *c*-approximation algorithm for Red-Blue pebbling where $c = o(c_b/c_r)$?

