On the Multi-User Security of Short Schnorr Signatures

Jeremiah Blocki and Seunghoon Lee

Department of Computer Science, Purdue University

October 10, 2019

Contents

Introduction

The (Short) Schnorr Signature Scheme Our Result

Technical Ingredients

The Generic Group Model The Known/Partially Known Set in the Global List Restricted Discrete-Log Oracle in the GGM

Multi-User Security of Short Schnorr Signatures

Security Games Security Reduction

We are now at...

Introduction The (Short) Schnorr Signature Scheme Our Result

Technical Ingredients

The Generic Group Model The Known/Partially Known Set in the Global List Restricted Discrete-Log Oracle in the GGM

Multi-User Security of Short Schnorr Signatures

Security Games Security Reduction

Software update m

Software update m

Software update m

Software update m

$$\sigma = \mathsf{Sign}(\underline{sk}, m)$$

The Schnorr Signature Scheme

- An efficient signature scheme based on discrete logarithms.
- Consider a 2k-bit prime q, i.e., $q \approx 2^{2k}$.

$Kg(1^k)$	Sign(sk,m)	$Vfy(pk,m,\sigma)$
1: $sk \leftarrow \mathbb{Z}_q$	1: $r \leftarrow \mathbb{Z}_q; I \leftarrow g^r$	1: $R \leftarrow g^s \cdot pk^{-e}$
2: $pk \leftarrow g^{sk}$	2: $e \leftarrow H(I m)$	2 : if $H({m{R}} {m{m}})=e$ then
3: return $(m{pk},m{sk})$	3: $s \leftarrow r + sk \cdot e \mod q$	3: return 1
	4 : return $\pmb{\sigma}=(\pmb{s},\pmb{e})$	4 : else return 0

- The verification works for a correct signature $\sigma=(s,e)$ because

$$R = g^s \cdot pk^{-e} = g^{s-sk \cdot e} = g^r = I.$$

• The length of the signature: 2k

$$+\underbrace{2k}_{\text{the back output}} = 4k.$$

the length of s the hash output

The "Short" Schnorr Signatures

Signature Length Comparison

Definition

A signature scheme $\Pi = (\text{Kg}, \text{Sign}, \text{Vfy})$ yields k-bits of security if any attacker running in time at most t can forge a signature with probability at most $\varepsilon_t = t/2^k$ and this should hold for all $t \leq 2^k$.

Signatures	Signature Length ¹	Security Level	Notes
RSA-FDH	3072	128	NIST recommendation
Schnorr	512	128	
Short Schnorr	384	128?	Our result
BLS	256	128	Computationally expensive
iO	128	128	Completely impractical

Multi-User Security Definition

- We consider the multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible
- We define the *1-out-of-*N *signature forgery game* SigForge $_{\mathcal{A},\Pi}^{N}(k)$ as follows:
 - 1. Gen (1^k) is run N times to obtain keys $(pk_i, sk_i), 1 \le i \le N$.
 - 2. Adversary \mathcal{A} is given pk_1, \dots, pk_N and access to oracles $\text{Sign}(sk_j, \cdot), 1 \leq j \leq N$. The adversary then outputs (m, σ) . Let \mathcal{Q}_j denote the set of all queries that \mathcal{A} asked to oracle $\text{Sign}(sk_j, \cdot)$.
 - 3. \mathcal{A} succeeds if and only if there exists some j such that (1) $Vfy(pk_j, m, \sigma) = 1$ and (2) $m \notin Q_j$. In this case the output of the experiment is defined to be 1.

Definition

We say that a signature scheme $\Pi = (Kg, Sign, Vfy)$ is (t, N, ϵ) -**MU-UF-CMA secure** (multi-user unforgeable against chosen message attack) if for every adversary A running in time at most t, the following bound holds:

$$\Pr\left[\mathsf{SigForge}_{\mathcal{A},\Pi}^{N}(k) = 1\right] \leq \epsilon.$$

Security Proofs of the Schnorr Signatures

	Single-User Security	Multi-User Security
Original Schnorr Signatures	• [PS96] – in the ROM • [NPSW09] – in the GGM • [Seu12, FJS14] – loss of factor $q_{\rm R0}$ seems to be unavoidable	 [GMLS02] - flawed [KMP16] - in the ROM + GGM
"Short" Schnorr Signatures	 [SJ00] - in the ROM + GGM [NPSW09] - non-tight reduction 	• Our result!

Security Proofs of the Schnorr Signatures

	Single-User Security	Multi-User Security
Original Schnorr Signatures	 [PS96] - in the ROM [NPSW09] - in the GGM [Seu12, FJS14] - loss of factor q_{R0} seems to be unavoidable 	 [GMLS02] - flawed [KMP16] - in the ROM + GGM
"Short" Schnorr Signatures	 [SJ00] - in the ROM + GGM [NPSW09] - non-tight reduction 	• Our result!

[Ber15] - "Key-Prefixed" Schnorr signatures ← - - - -

We are now at...

Introduction

The (Short) Schnorr Signature Scheme Our Result

Technical Ingredients

The Generic Group Model The Known/Partially Known Set in the Global List Restricted Discrete-Log Oracle in the GGM

Multi-User Security of Short Schnorr Signatures

Security Games Security Reduction

Our Result

We show that the "short" Schnorr signature scheme provides k-bits of security in **both** the single and multi-user versions of the signature forgery game.

Theorem (informal)

Any attacker running in time t against the short Schnorr signature scheme

- 1. wins the signature forgery game (UF-CMA) with probability at most $\mathcal{O}(t/2^k)$, and
- 2. wins the multi-user signature forgery game (MU-UF-CMA) with probability at most $O((t+N)/2^k)$ (where N denote the number of distinct users/public keys)

in the generic group model (of order $q \approx 2^{2k}$) plus random oracle model.

Why is this important? We don't lose a factor of N in the security reduction!

Example

Suppose that $q \approx 2^{224}$ (i.e., k = 112), $N = 2^{32}$, and $t = 2^{80}$.

- Naïve approach: $\epsilon_{MU} \approx N \cdot t/2^k = 1$
- Our result: $\epsilon_{\rm MU} \approx (t+N)/2^k = 2^{-32}$

We are now at...

Introduction

The (Short) Schnorr Signature Scheme Our Result

Technical Ingredients

The Generic Group Model

The Known/Partially Known Set in the Global List Restricted Discrete-Log Oracle in the GGM

Multi-User Security of Short Schnorr Signatures

Security Games Security Reduction

The Generic Group Model [Sho97]

The Generic Group Model [Sho97]

The Generic Group Model: Justification

- For certain elliptic curve groups the best known attacks are all generic [JMV01, FST10].
- Heuristic: experience suggests that protocols with security proofs in the GGM doesn't have inherent structural weaknesses and will be secure as long as we instantiate with a reasonable elliptic curve group.
- Counterexamples are artificially crafted [Den02].

We are now at...

Introduction

The (Short) Schnorr Signature Scheme Our Result

Technical Ingredients

The Generic Group Model The Known/Partially Known Set in the Global List Restricted Discrete-Log Oracle in the GGM

Multi-User Security of Short Schnorr Signatures

Security Games Security Reduction

We can keep track of group elements with (partially) known discrete-log solutions.

• $(\mathfrak{y}, a, b) \in \mathcal{L} \Leftrightarrow \mathfrak{y} = \tau(g^{a \cdot x + b})$

Global List ${\cal L}$		
Known Set ${\cal K}$	Partially Known Set \mathcal{PK}_x	
$(\tau(g), 0, 1)$	(au(h), 1, 0)	

Public parameters: $\tau(g), \tau(h) = \tau(g^x)$

We can keep track of group elements with (partially) known discrete-log solutions.

• $(\mathfrak{y}, a, b) \in \mathcal{L} \Leftrightarrow \mathfrak{y} = \tau(g^{a \cdot x + b})$

Global List ${\cal L}$		
Partially Known Set \mathcal{PK}_x		
(au(h), 1, 0)		

Public parameters: $\tau(g), \tau(h) = \tau(g^x)$

• $\operatorname{Mult}(\tau(g),\tau(g))=\tau(g)$	$l^2)$)
--	--------	---

•

We can keep track of group elements with (partially) known discrete-log solutions.

• $(\mathfrak{y}, a, b) \in \mathcal{L} \Leftrightarrow \mathfrak{y} = \tau(g^{a \cdot x + b})$

Global List ${\cal L}$		
Partially Known Set \mathcal{PK}_x		
(au(h), 1, 0)		
$(\tau(g^{x+1}),1,1)$		

Public parameters: $\tau(g), \tau(h) = \tau(g^x)$

$$\quad \operatorname{Mult}(\tau(g),\tau(g))=\tau(g^2)$$

•
$$\operatorname{Mult}(\tau(g),\tau(h)) = \tau(g^{x+1})$$

We can keep track of group elements with (partially) known discrete-log solutions.

• $(\mathfrak{y}, a, b) \in \mathcal{L} \Leftrightarrow \mathfrak{y} = \tau(g^{a \cdot x + b})$

Global List $\mathcal L$		
Known Set ${\cal K}$	Partially Known Set \mathcal{PK}_x	
$(\tau(g), 0, 1)$	(au(h), 1, 0)	
$(\tau(g^2),0,2)$	$(\tau(g^{x+1}), 1, 1)$	
$(\tau(g^{-1}), 0, -1)$		

Public parameters: $\tau(g), \tau(h) = \tau(g^x)$

•
$$\operatorname{Mult}(\tau(g),\tau(g))=\tau(g^2)$$

•
$$\operatorname{Mult}(\tau(g),\tau(h))=\tau(g^{x+1})$$

•
$$\operatorname{Inv}(\tau(g)) = \tau(g^{-1})$$

We can keep track of group elements with (partially) known discrete-log solutions.

• $(\mathfrak{y}, a, b) \in \mathcal{L} \Leftrightarrow \mathfrak{y} = \tau(g^{a \cdot x + b})$

Global List $\mathcal L$		
Known Set ${\cal K}$	Partially Known Set \mathcal{PK}_x	
(au(g),0,1)	(au(h),1,0)	
$(\tau(g^2),0,2)$	$(\tau(g^{x+1}), 1, 1)$	
$(\tau(g^{-1}), 0, -1)$	$(\tau(g^{-x}),-1,0)$	

Public parameters: $\tau(g), \tau(h) = \tau(g^x)$

•
$$\operatorname{Mult}(\tau(g),\tau(g))=\tau(g^2)$$

•
$$\operatorname{Mult}(\tau(g),\tau(h))=\tau(g^{x+1})$$

•
$$\operatorname{Inv}(\tau(g)) = \tau(g^{-1})$$

 $\bullet \ \operatorname{Inv}(\tau(h)) = \tau(g^{-x})$

We can keep track of group elements with (partially) known discrete-log solutions.

• $(\mathfrak{y}, a, b) \in \mathcal{L} \Leftrightarrow \mathfrak{y} = \tau(g^{a \cdot x + b})$

Global List ${\cal L}$		
Known Set ${\cal K}$	Partially Known Set \mathcal{PK}_x	
(au(g),0,1)	(au(h), 1, 0)	
$(\tau(g^2),0,2)$	$(\tau(g^{x+1}), 1, 1)$	
$(\tau(g^{-1}), 0, -1)$	$(\tau(g^{-x}), -1, 0)$	

Public parameters: $\tau(g), \tau(h) = \tau(g^x)$

 $\bullet \ \operatorname{Mult}(\tau(g),\tau(g))=\tau(g^2)$

•
$$\operatorname{Mult}(\tau(g),\tau(h))=\tau(g^{x+1})$$

•
$$\operatorname{Inv}(\tau(g)) = \tau(g^{-1})$$

•
$$\operatorname{Inv}(\tau(h)) = \tau(g^{-x})$$

 $\bullet \ \operatorname{Mult}(\tau(g^{x+1}),\tau(g^{-x}))=\tau(g)$

We can keep track of group elements with (partially) known discrete-log solutions.

• $(\mathfrak{y}, a, b) \in \mathcal{L} \Leftrightarrow \mathfrak{y} = \tau(g^{a \cdot x + b})$

Global List $\mathcal L$		
Known Set ${\cal K}$	Partially Known Set \mathcal{PK}_x	
$(\tau(g),0,1)$	(au(h), 1, 0)	
$(\tau(g^2),0,2)$	$(au(g^{x+1}), 1, 1)$	
$(\tau(g^{-1}), 0, -1)$	$(\tau(g^{-x}), -1, 0)$	
÷		

Public parameters: $\tau(g), \tau(h) = \tau(g^x)$

 $\bullet \ \operatorname{Mult}(\tau(g),\tau(g))=\tau(g^2)$

•
$$\operatorname{Mult}(\tau(g),\tau(h))=\tau(g^{x+1})$$

•
$$\operatorname{Inv}(\tau(g)) = \tau(g^{-1})$$

•
$$\operatorname{Inv}(\tau(h)) = \tau(g^{-x})$$

 $\bullet \ \operatorname{Mult}(\tau(g^{x+1}),\tau(g^{-x}))=\tau(g)$

The Known/Partially Known Set in the Global List

We can keep track of group elements with (partially) known discrete-log solutions.

• $(\mathfrak{y}, a, b) \in \mathcal{L} \Leftrightarrow \mathfrak{y} = \tau(g^{a \cdot x + b})$

Global List ${\cal L}$	
Known Set ${\cal K}$	Partially Known Set \mathcal{PK}_x
$(\tau(g),0,1)$	(au(h), 1, 0)
$(\tau(g^2),0,2)$	$(\tau(g^{x+1}), 1, 1)$
$(\tau(g^{-1}), 0, -1)$	$(\tau(g^{-x}),-1,0)$
÷	÷

Public parameters: $\tau(g), \tau(h) = \tau(g^x)$

 $\bullet \ \operatorname{Mult}(\tau(g),\tau(g))=\tau(g^2)$

•
$$\operatorname{Mult}(\tau(g),\tau(h))=\tau(g^{x+1})$$

•
$$\operatorname{Inv}(\tau(g)) = \tau(g^{-1})$$

•
$$\operatorname{Inv}(\tau(h)) = \tau(g^{-x})$$

 $\bullet \ \operatorname{Mult}(\tau(g^{x+1}),\tau(g^{-x}))=\tau(g)$

Event "BRIDGE":

$$\begin{array}{ll} (\mathfrak{y},a,b),(\mathfrak{y},a',b')\in\mathcal{L} & \Rightarrow & ax+b=a'x+b',\\ \text{with } (a,b)\neq(a',b') & & \therefore x=(a-a')^{-1}(b'-b). \end{array}$$

The Known/Partially Known Set in the Global List

We can extend this to the multi-user case.

- Public parameters: $\tau(g), (\tau(h_1), \cdots, \tau(h_N)) = (\tau(g^{x_1}), \cdots, \tau(g^{x_N}))$
- Instead of scalar a, we will have an N-dimensional vector \vec{a} such that the list \mathcal{L} contains a tuple $(\mathfrak{y}, \vec{a}, b)$ such that

$$\mathfrak{y} = \tau(g^{\vec{a}\cdot\vec{x}+b})$$

where $\vec{x} = (x_1, \cdots, x_N)$.

- The known set \mathcal{K}^N contains tuples $(\mathfrak{y},\vec{0},b),$ and
- The partially known set $\mathcal{PK}^N_{\{x_i\}_{i=1}^N}$ contains tuples $(\mathfrak{y}, \vec{a} \neq \vec{0}, b)$.
- The event "BRIDGE^N" occurs if $(\mathfrak{y}, \vec{a}, b), (\mathfrak{y}, \vec{a}', b') \in \mathcal{L}$ with $(\vec{a}, b) \neq (\vec{a}', b')$.

Claim

$$\Pr\left[\mathsf{BRIDGE}^N\right] = \mathcal{O}\left(\frac{(t+N)^2}{q}\right).$$

The Known/Partially Known Set in the Global List

We can extend this to the multi-user case.

- Public parameters: $\tau(g), (\tau(h_1), \cdots, \tau(h_N)) = (\tau(g^{x_1}), \cdots, \tau(g^{x_N}))$
- Instead of scalar a, we will have an N-dimensional vector \vec{a} such that the list \mathcal{L} contains a tuple $(\mathfrak{y}, \vec{a}, b)$ such that

$$\mathfrak{y} = \tau(g^{\vec{a}\cdot\vec{x}+b})$$

where $\vec{x} = (x_1, \cdots, x_N)$.

- The known set \mathcal{K}^N contains tuples $(\mathfrak{y},\vec{0},b),$ and
- The partially known set $\mathcal{PK}^N_{\{x_i\}_{i=1}^N}$ contains tuples $(\mathfrak{y}, \vec{a} \neq \vec{0}, b)$.
- The event "BRIDGE^N" occurs if $(\mathfrak{y}, \vec{a}, b), (\mathfrak{y}, \vec{a}', b') \in \mathcal{L}$ with $(\vec{a}, b) \neq (\vec{a}', b')$.

Claim

$$\Pr\left[\mathsf{BRIDGE}^N\right] = \mathcal{O}\left(\frac{(t+N)^2}{q}\right).$$

• But what if $\eta \notin \mathcal{L}$, i.e., "fresh"?

We are now at...

Introduction

The (Short) Schnorr Signature Scheme Our Result

Technical Ingredients

The Generic Group Model The Known/Partially Known Set in the Global List Restricted Discrete-Log Oracle in the GGM

Multi-User Security of Short Schnorr Signatures

Security Games Security Reduction

Why restricting $\text{DLog}_q(\cdot)$ to "fresh" queries?

• Trivial attack: Pick random $r\in\mathbb{Z}_q$, compute $\tau(h_ig^r)$ using Mult oracle and query $\mathrm{DLog}_g(\tau(h_ig^r))$

We are now at...

Introduction

The (Short) Schnorr Signature Scheme Our Result

Technical Ingredients

The Generic Group Model The Known/Partially Known Set in the Global List Restricted Discrete-Log Oracle in the GGM

Multi-User Security of Short Schnorr Signatures Security Games

21/33

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

Consider $G = \langle g \rangle$ of prime order $q \approx 2^{2k}$ and $\tau : G \to \mathbb{G}$.

/33

- Multi-user security in the "1-out-of-N" setting
- The probability that the attacker can forge any one of N signatures is negligible

The 1-out-of-N Generic Signature Forgery Game SigForge^{G0,N}_{A,Π}(k):

Consider $G = \langle g \rangle$ of prime order $q \approx 2^{2k}$ and $\tau : G \to \mathbb{G}$.

33

Multi-User Security Definition

Definition

We say that a signature scheme $\Pi = (Kg, Sign, Vfy)$ is $(t, N, q_{R0}, q_{G0}, q_{Sign}, \epsilon)$ -**MU-UF-CMA** secure (multi-user unforgeable against chosen message attack) if for every adversary \mathcal{A} running in time at most t and making at most q_{R0} (resp. q_{G0}, q_{Sign}) queries to the random oracle (resp. generic group, signature oracles), the following bound holds:

$$\Pr\left[\mathsf{SigForge}_{\mathcal{A},\Pi}^{\mathsf{GO},N}(k) = 1\right] \leq \epsilon.$$

Recall

The event BRIDGE^N occurs if \mathcal{L} ever contains two distinct tuples $(\mathfrak{y}_1, \vec{a}_1, b_1)$ and $(\mathfrak{y}_2, \vec{a}_2, b_2)$ such that $\mathfrak{y}_1 = \mathfrak{y}_2$ but $(\vec{a}_1, b_1) \neq (\vec{a}_2, b_2)$.

- As long as the event $BRIDGE^N$ has not occurred we can (essentially) view x_1, \ldots, x_N as uniformly random values that that yet to be selected.
- More precisely, the values x_1, \ldots, x_N are selected subject to a few constraints, e.g., if we know $\mathfrak{f}_1 = \tau(g^{\vec{a}_1 \cdot \vec{x} + b_1}) \neq \mathfrak{f}_2 = \tau(g^{\vec{a}_2 \cdot \vec{x} + b_2})$ then we have the constraint that $\vec{a}_1 \cdot \vec{x} + b_1 \neq \vec{a}_2 \cdot \vec{x} + b_2$.

The 1-out-of-N Generic BRIDGE^N-Finding Game BridgeChal^{G0,N}_{\mathcal{A}}(k):

The 1-out-of-N Generic $\mathsf{BRIDGE}^N\operatorname{-Finding}\nolimits\operatorname{Game}\nolimits\operatorname{BridgeChal}^{\mathrm{GO},N}_{\mathcal{A}}(k)$:

The 1-out-of-N Generic BRIDGE^N-Finding Game BridgeChal^{GO, N}_{\mathcal{A}}(k):

The 1-out-of-N Generic $\mathsf{BRIDGE}^N\operatorname{\mathsf{-Finding}}\nolimits\mathsf{Game}$ $\mathsf{BridgeChal}^{\operatorname{GO},N}_{\mathcal{A}}(k)$:

The 1-out-of-N Generic $\mathsf{BRIDGE}^N\operatorname{-Finding}\nolimits\operatorname{Game}\nolimits$ BridgeChal $^{\mathsf{GO},N}_{\mathcal{A}}(k)$:

The 1-out-of-N Generic $\mathsf{BRIDGE}^N\operatorname{-Finding}\nolimits\operatorname{Game}\nolimits\operatorname{BridgeChal}^{\mathrm{GO},N}_{\mathcal{A}}(k)$:

The 1-out-of-N Generic $\mathsf{BRIDGE}^N\operatorname{-Finding}\nolimits\operatorname{Game}\nolimits\operatorname{BridgeChal}^{\mathrm{GO},N}_{\mathcal{A}}(k)$:

The 1-out-of-N Generic $\mathsf{BRIDGE}^N\operatorname{-Finding}\nolimits\operatorname{Game}\nolimits$ BridgeChal $^{\mathsf{GO},N}_{\mathcal{A}}(k)$:

The 1-out-of-N Generic BRIDGE^N-Finding Game BridgeChal^{GO,N}_{\mathcal{A}}(k):

Consider $G = \langle g \rangle$ of prime order $q \approx 2^{2k}$ and $\tau : G \to \mathbb{G}$.

/33

The 1-out-of-N Generic BRIDGE^N-Finding Game BridgeChal^{GO,N}_{\mathcal{A}}(k):

The 1-out-of-N Generic BRIDGE^N-Finding Game BridgeChal^{GO,N}_{\mathcal{A}}(k):

The Multi-User Bridge Game

Theorem

The probability an attacker A running in time t wins the 1-out-of-N generic BRIDGE^N-finding game (even with access to the restricted DLog oracle) is at most

$$\Pr\left[\mathsf{BridgeChal}_{\mathcal{A}}^{\mathsf{GO},N}(k) = 1\right] \leq \frac{tN + 3t(t+1)/2}{q - (N+3t+1)^2 - N} = \mathcal{O}\left(\frac{(t+N)^2}{q}\right)$$

where q is the order of the group G.

Corollary

For any attacker \mathcal{A} running in time $t' = t + 2\log q$ we have

$$\Pr\left[\operatorname{1ofNDLog}_{\mathcal{A}}^{\operatorname{GO},N}(k)=1\right] \leq \frac{tN+3t(t+1)/2}{q-(N+3t+1)^2-N} = \mathcal{O}\left(\frac{(t+N)^2}{q}\right)$$

where q is the order of the group G.

We are now at...

Introduction

The (Short) Schnorr Signature Scheme Our Result

Technical Ingredients

The Generic Group Model The Known/Partially Known Set in the Global List Restricted Discrete-Log Oracle in the GGM

Multi-User Security of Short Schnorr Signatures

Security Games Security Reduction

Main Theorem

Theorem

In the generic group model of prime order $q \approx 2^{2k}$ and the programmable random oracle model the short Schnorr signature scheme is $(t, N, q_{\text{RO}}, q_{\text{GO}}, q_{\text{Sign}}, \epsilon)$ -MU-UF-CMA secure with $\epsilon = \frac{tN+3t(t+2)/2}{q-(N+3t+1)^2-N} + \frac{t^2}{q} + \frac{t+1}{2^k} = \mathcal{O}\left(\frac{t+N}{2^k}\right)$.

• Our result provides k-bits of multi-user security of "short" Schnorr signatures since usually $t \gg N$ ($t \approx 2^{80}, N \approx 2^{32}$).

Probability of outputting \perp

Probability of outputting \perp $\leq q_{\mathsf{Sign}} imes rac{q_{\mathtt{RO}} + q_{\mathtt{Sign}}}{2} = \mathcal{O}$ $\leq \frac{q_{\rm R0} + q_{\rm Sign}}{1} + \frac{1}{2}$ comes with "short" Schnorr signatures

$$\begin{split} & \underline{\operatorname{Probability of outputting} \perp} \\ & \leq q_{\operatorname{Sign}} \times \frac{q_{\operatorname{RO}} + q_{\operatorname{Sign}}}{q} = \mathcal{O}\left(\frac{t^2}{q}\right) \\ & \leq \frac{q_{\operatorname{RO}} + q_{\operatorname{Sign}}}{q - |\mathcal{L}|} + \frac{1}{2^k} = \mathcal{O}\left(\frac{t}{2^k}\right) \\ & \leq \frac{q_{\operatorname{RO}}}{2^k} = \mathcal{O}\left(\frac{t}{2^k}\right) \\ & \leq \frac{q_{\operatorname{RO}}}{2^k} = \mathcal{O}\left(\frac{t}{2^k}\right) \\ & \operatorname{comes with "short" Schnorr signatures} \\ & \therefore \Pr\left[\operatorname{SigForge}_{\operatorname{Aisg},\Pi}^{\operatorname{co},N}(k) = 1\right] \\ & \leq \Pr\left[\operatorname{BridgeChal}_{\operatorname{Abridge}}^{\operatorname{co},N}(k) = 1\right] + \mathcal{O}\left(\frac{t}{2^k}\right) \\ & \leq \mathcal{O}\left(\frac{t+N}{2^k}\right). \end{split}$$

Conclusion and Future Work

Our Contributions

- We showed that the *short* Schnorr signatures provides k-bits of security in *both* single and multi-user settings under the programmable ROM and the GGM.
- Breaking multi-user security of short Schnorr signatures in "1-out-of-N" setting is not *easier* than breaking a single instance.
- The short Schnorr signature is still secure even if we allow a restricted discrete-log oracle in the GGM.
- We provide a new proof technique which keeps track of the known and the partially known set in a global list.

Future Work

- Security of (short) Schnorr signatures against preprocessing attacks [CK18].
 - Preprocessing attacks are used to criticize non-standard generic group models proposed earlier [SJ00, KMP16].
 - Preprocessing phase is not doable in both non-standard models, whereas it is clearly captured by the original model.

References I

Daniel J. Bernstein. *Multi-user Schnorr security, revisited*, Cryptology ePrint Archive, Report 2015/996, 2015, http://eprint.iacr.org/2015/996.

Henry Corrigan-Gibbs and Dmitry Kogan. *The discrete-logarithm problem with preprocessing.* EUROCRYPT 2018, Part II (Jesper Buus Nielsen and Vincent Rijmen, eds.), LNCS, vol. 10821, Springer, Heidelberg, April / May 2018, pp. 415-447.

Alexander W. Dent, *Adapting the weaknesses of the random oracle model to the generic group model*, ASIACRYPT 2002 (Yuliang Zheng, ed.), LNCS, vol. 2501, Springer, Heidelberg, December 2002, pp. 100–109.

Nils Fleischhacker, Tibor Jager, and Dominique Schröder, *On tight security proofs for Schnorr signatures*, ASIACRYPT 2014, Part I (Palash Sarkar and Tetsu Iwata, eds.), LNCS, vol. 8873, Springer, Heidelberg, December 2014, pp. 512–531.

S. Galbraith, J. Malone-Lee, and N. P. Smart, *Public key signatures in the multi-user setting*, Inf. Process. Lett. **83** (2002), no. 5, 263–266.

Gregory Neven, Nigel P. Smart, and Bogdan Warinschi, *Hash function requirements for schnorr signatures*, Journal of Mathematical Cryptology **3** (2009).

References II

David Pointcheval and Jacques Stern, *Security proofs for signature schemes*, EUROCRYPT'96 (Ueli M. Maurer, ed.), LNCS, vol. 1070, Springer, Heidelberg, May 1996, pp. 387-398.

Victor Shoup, *Lower bounds for discrete logarithms and related problems*, EUROCRYPT'97 (Walter Fumy, ed.), LNCS, vol. 1233, Springer, Heidelberg, May 1997, pp. 256–266.

Claus-Peter Schnorr and Markus Jakobsson. *Security of signed ElGamal encryption*, ASIACRYPT 2000 (Tatsuaki Okamoto, ed.), LNCS, vol. 1976, Springer, Heidelberg, December 2000, pp. 73-89.

Questions?

Jeremiah Blocki and Seunghoon Lee

On the Multi-User Security of Short Schnorr Signatures

