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P1 = f1gP1 = f1g; P2 = f2; 3gP1 = f1g; P2 = f2; 3g; P3 = f3; 4gP1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5g

cc(G) := min
P

fjP1j+ � � �+ jPtjg

P1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5gP1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5gP1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5gP1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5g

∴ cc(G) �
P

t

i=1
jPij = 1∴ cc(G) �

P
t

i=1
jPij = 1 + 2∴ cc(G) �

P
t

i=1
jPij = 1 + 2 + 2∴ cc(G) �

P
t

i=1
jPij = 1 + 2 + 2 + 1 = 6:
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Challenging Problem.
� Given a DAG G, find the (approximately) minimum cost pebbling

Why We Care About cc(G)?
� Analysis of data-independent Memory-Hard Functions (iMHFs)
� [AS15] For a secure iMHF, it suffices to find a DAG G with constant

indegree and maximum cc(G)

� Amortization / Parallelism (cc(G�n) = n� cc(G))

Challenges.
� We don’t know how to compute cc(G) exactly for any given G

� Large gaps between upper/lower bounds for known constructions

Example
DRSample: one practical instantiation of an iMHF

10�6 �N2

logN
� cc(DRSample) � 1 �N2

logN
:
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Our Result.
� [BZ18] proved that computing cc(G) is NP-Hard
� This did not rule out the existence of a constant-factor approximation

algorithm for cc(G)

� Our result is the hardness of any constant factor approximation to the
cost of graph pebbling even for DAGs with constant indegree.

Theorem
Given a DAG G with constant indegree, it is Unique Games hard to
approximate cc(G) within any constant factor.

Implication.
� Cryptanalysis of iMHFs is Hard!
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Svensson’s Result [Sve12].
� cc(G) is related to the combinatorial property called Depth-Robustness
� Unique Games Hard to approximately test DAGs for Depth-Robustness

� Challenge 1: Svensson’s reduction dœsn’t work for constant indegree graphs
� Challenge 2: Connection between Depth-Robustness and cc(G) is not tight

Indegree Reduction Procedure using -Extreme DR Graph G;L+1.

B0

T0

...
...

B`

T`

...
...

BL�1

TL�1

BL

� � � � � � � � �

ĜU

� � � � � � � � �
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� � � � � � � � �

� � � � � �

� � � � � �
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+

0

...

`

L–1

...

L

G;L+1

)

B0

T0

...
...

B`

T`

...
...

BL�1

TL�1

BL
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SparsifyG;L+1
(ĜU )
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� � � � � �
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� � � � � �

Superconcentrator Overlay.

1 2 � � � ` � � � N

G

o1 o2 � � � o` � � � oN

superconcentrator

� � �

i1 i2 � � � i` � � � iN

� � �

�� �

� � �

GS
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